304 research outputs found

    Zeroth Law compatibility of non-additive thermodynamics

    Full text link
    Non-extensive thermodynamics was criticized among others by stating that the Zeroth Law cannot be satisfied with non-additive composition rules. In this paper we determine the general functional form of those non-additive composition rules which are compatible with the Zeroth Law of thermodynamics. We find that this general form is additive for the formal logarithms of the original quantities and the familiar relations of thermodynamics apply to these. Our result offers a possible solution to the longstanding problem about equilibrium between extensive and non-extensive systems or systems with different non-extensivity parameters.Comment: 18 pages, 1 figur

    How much is your diet? (Estimation about prices of “traditional Hungarian”, diabetic, low energy diets, and related life-style expenses)

    Get PDF
    Nutrition and lifestyle-related diseases are some of the leading morbidities among the Hungarian population. People who want to lose weight often complain that healthy diet is expensive. Our aim was to quantify the costs of three different types of diet for a three-day period. We compared “traditional Hungarian”, low energy, and diabetic diets, considering both energy content and expenses related to lifestyle. According to our estimation: diabetic (including medication) and ”traditional” Hungarian diets were the most expensive. Low energy diet proved to be the most cost-effective despite the extra expenditures of higher physical activity

    Different sensing mechanisms in single wire and mat carbon nanotubes chemical sensors

    Get PDF
    Chemical sensing properties of single wire and mat form sensor structures fabricated from the same carbon nanotube (CNT) materials have been compared. Sensing properties of CNT sensors were evaluated upon electrical response in the presence of five vapours as acetone, acetic acid, ethanol, toluene, and water. Diverse behaviour of single wire CNT sensors was found, while the mat structures showed similar response for all the applied vapours. This indicates that the sensing mechanism of random CNT networks cannot be interpreted as a simple summation of the constituting individual CNT effects, but is associated to another robust phenomenon, localized presumably at CNT-CNT junctions, must be supposed.Comment: 12 pages, 5 figures,Applied Physics A: Materials Science and Processing 201

    Strange hyperon and antihyperon production from quark and string-rope matter

    Get PDF
    Hyperon and antihyperon production is investigated using two microscopical models: {\bf (1)} the fast hadronization of quark matter as given by the ALCOR model; {\bf (2)} string formation and fragmentation as in the HIJING/B model. We calculate the particle numbers and momentum distributions for Pb+Pb collisions at CERN SPS energies in order to compare the two models with each other and with the available experimental data. We show that these two theoretical approaches give similar yields for the hyperons, but strongly differ for antihyperons.Comment: 11 pages, Latex, 3 EPS figures, contribution to the Proceedings of the 4th International Conference on Strangeness in Quark Matter (SQM'98), Padova, Italy, 20-24 July 199

    Paired and altruistic kidney donation in the UK: algorithms and experimentation

    Get PDF
    We study the computational problem of identifying optimal sets of kidney exchanges in the UK. We show how to expand an integer programming-based formulation [1, 19] in order to model the criteria that constitute the UK definition of optimality. The software arising from this work has been used by the National Health Service Blood and Transplant to find optimal sets of kidney exchanges for their National Living Donor Kidney Sharing Schemes since July 2008.We report on the characteristics of the solutions that have been obtained in matching runs of the scheme since this time. We then present empirical results arising from the real datasets that stem from these matching runs, with the aim of establishing the extent to which the particular optimality criteria that are present in the UK influence the structure of the solutions that are ultimately computed. A key observation is that allowing 4-way exchanges would be likely to lead to a significant number of additional transplants

    Density Fluctuations in the Quark-Gluon Plasma

    Get PDF
    Using the kinetic theory we discuss how the particle and energy densities of the quark-gluon plasma fluctuate in a space-time cell. The fluctuations in the equilibrium plasma and in that one from the early stage of ultrarelativistic heavy-ion collisions are estimated. Within the physically interesting values of the parameters involved the fluctuations appear sizeable in both cases.Comment: 8 pages, no macro

    Effect of the disorder in graphene grain boundaries: A wave packet dynamics study

    Get PDF
    Chemical vapor deposition (CVD) on Cu foil is one of the most promising methods to produce graphene samples despite of introducing numerous grain boundaries into the perfect graphene lattice. A rich variety of GB structures can be realized experimentally by controlling the parameters in the CVD method. Grain boundaries contain non-hexagonal carbon rings (4, 5, 7, 8 membered rings) and vacancies in various ratios and arrangements. Using wave packet dynamic (WPD) simulations and tight-binding electronic structure calculations, we have studied the effect of the structure of GBs on the transport properties. Three model GBs with increasing disorder were created in the computer: a periodic 5-7 GB, a "serpentine" GB, and a disordered GB containing 4, 8 membered rings and vacancies. It was found that for small energies (E = EF ± 1 eV) the transmission decreases with increasing disorder. Four membered rings and vacancies are identified as the principal scattering centers. Revealing the connection between the properties of GBs and the CVD growth method may open new opportunities in the graphene based nanoelectronics. © 2013 Elsevier B.V. All rights reserved

    Near-thermal equilibrium with Tsallis distributions in heavy ion collisions

    Get PDF
    Hadron yields in high energy heavy ion collisions have been fitted and reproduced by thermal models using standard statistical distributions. These models give insight into the freeze-out conditions at varying beam energies. In this paper we investigate changes to this analysis when the statistical distributions are replaced by Tsallis distributions for hadrons. We investigate the appearance of near-thermal equilibrium state at SPS and RHIC energies. We obtain better fits with smaller chi^2 for the same hadron data, as applied earlier in the thermal fits for SPS energies but not for RHIC energies. This result indicates that at RHIC energies the final state is very well described by a single freeze-out temperature with very little room for fluctuations.Comment: 8 pages, 6 figure
    corecore