48 research outputs found

    The synthetic peptide P111-136 derived from the C-terminal domain of heparin affin regulatory peptide inhibits tumour growth of prostate cancer PC-3 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heparin affin regulatory peptide (HARP), also called pleiotrophin, is a heparin-binding, secreted factor that is overexpressed in several tumours and associated to tumour growth, angiogenesis and metastasis. The C-terminus part of HARP composed of amino acids 111 to 136 is particularly involved in its biological activities and we previously established that a synthetic peptide composed of the same amino acids (P111-136) was capable of inhibiting the biological activities of HARP. Here we evaluate the ability of P111-136 to inhibit <it>in vitro </it>and <it>in vivo </it>the growth of a human tumour cell line PC-3 which possess an HARP autocrine loop.</p> <p>Methods</p> <p>A total lysate of PC-3 cells was incubated with biotinylated P111-136 and pulled down for the presence of the HARP receptors in Western blot. <it>In vitro</it>, the P111-136 effect on HARP autocrine loop in PC-3 cells was determined by colony formation in soft agar. <it>In vivo</it>, PC-3 cells were inoculated in the flank of athymic nude mice. Animals were treated with P111-136 (5 mg/kg/day) for 25 days. Tumour volume was evaluated during the treatment. After the animal sacrifice, the tumour apoptosis and associated angiogenesis were evaluated by immunohistochemistry. <it>In vivo </it>anti-angiogenic effect was confirmed using a mouse Matrigel™ plug assay.</p> <p>Results</p> <p>Using pull down experiments, we identified the HARP receptors RPTPβ/ζ, ALK and nucleolin as P111-136 binding proteins. <it>In vitro</it>, P111-136 inhibits dose-dependently PC-3 cell colony formation. Treatment with P111-136 inhibits significantly the PC-3 tumour growth in the xenograft model as well as tumour angiogenesis. The angiostatic effect of P111-136 on HARP was also confirmed using an <it>in vivo </it>Matrigel™ plug assay in mice</p> <p>Conclusions</p> <p>Our results demonstrate that P111-136 strongly inhibits the mitogenic effect of HARP on <it>in vitro </it>and <it>in vivo </it>growth of PC-3 cells. This inhibition could be linked to a direct or indirect binding of this peptide to the HARP receptors (ALK, RPTPβ/ζ, nucleolin). <it>In vivo</it>, the P111-136 treatment significantly inhibits both the PC-3 tumour growth and the associated angiogenesis. Thus, P111-136 may be considered as an interesting pharmacological tool to interfere with tumour growth that has now to be evaluated in other cancer types.</p

    Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo

    Get PDF
    BACKGROUND: Activating mutations of FGFR3 are frequently identified in superficial urothelial carcinoma (UC) and increased expression of FGFR1 and FGFR3 are common in both superficial and invasive UC. METHODS: The effects of inhibition of receptor activity by three small molecule inhibitors (PD173074, TKI-258 and SU5402) were investigated in a panel of bladder tumour cell lines with known FGFR expression levels and FGFR3 mutation status. RESULTS: All inhibitors prevented activation of FGFR3, and inhibited downstream MAPK pathway signalling. Response was related to FGFR3 and/or FGFR1 expression levels. Cell lines with the highest levels of FGFR expression showed the greatest response and little or no effect was measured in normal human urothelial cells or in UC cell lines with activating RAS gene mutations. In sensitive cell lines, the drugs induced cell cycle arrest and/or apoptosis. IC(50) values for PD173074 and TKI-258 were in the nanomolar concentration range compared with micromolar concentrations for SU5402. PD173074 showed the greatest effects in vitro and in vivo significantly delayed the growth of subcutaneous bladder tumour xenografts. CONCLUSION: These results indicate that inhibition of FGFR1 and wild-type or mutant FGFR3 may represent a useful therapeutic approach in patients with both non-muscle invasive and muscle invasive UC

    Amplified Loci on Chromosomes 8 and 17 Predict Early Relapse in ER-Positive Breast Cancers

    Get PDF
    Adjuvant hormonal therapy is administered to all early stage ER+ breast cancers, and has led to significantly improved survival. Unfortunately, a subset of ER+ breast cancers suffer early relapse despite hormonal therapy. To identify molecular markers associated with early relapse in ER+ breast cancer, an outlier analysis method was applied to a published gene expression dataset of 268 ER+ early-stage breast cancers treated with tamoxifen alone. Increased expression of sets of genes that clustered in chromosomal locations consistent with the presence of amplicons at 8q24.3, 8p11.2, 17q12 (HER2 locus) and 17q21.33-q25.1 were each found to be independent markers for early disease recurrence. Distant metastasis free survival (DMFS) after 10 years for cases with any amplicon (DMFS  = 56.1%, 95% CI  = 48.3–63.9%) was significantly lower (P  = 0.0016) than cases without any of the amplicons (DMFS  = 87%, 95% CI  = 76.3% –97.7%). The association between presence of chromosomal amplifications in these regions and poor outcome in ER+ breast cancers was independent of histologic grade and was confirmed in independent clinical datasets. A separate validation using a FISH-based assay to detect the amplicons at 8q24.3, 8p11.2, and 17q21.33-q25.1 in a set of 36 early stage ER+/HER2- breast cancers treated with tamoxifen suggests that the presence of these amplicons are indeed predictive of early recurrence. We conclude that these amplicons may serve as prognostic markers of early relapse in ER+ breast cancer, and may identify novel therapeutic targets for poor prognosis ER+ breast cancers

    FGFR1-Induced Epithelial to Mesenchymal Transition through MAPK/PLCγ/COX-2-Mediated Mechanisms

    Get PDF
    Tumour invasion and metastasis is the most common cause of death from cancer. For epithelial cells to invade surrounding tissues and metastasise, an epithelial-mesenchymal transition (EMT) is required. We have demonstrated that FGFR1 expression is increased in bladder cancer and that activation of FGFR1 induces an EMT in urothelial carcinoma (UC) cell lines. Here, we created an in vitro FGFR1-inducible model of EMT, and used this model to identify regulators of urothelial EMT. FGFR1 activation promoted EMT over a period of 72 hours. Initially a rapid increase in actin stress fibres occurred, followed by an increase in cell size, altered morphology and increased migration and invasion. By using site-directed mutagenesis and small molecule inhibitors we demonstrated that combined activation of the mitogen activated protein kinase (MAPK) and phospholipase C gamma (PLCγ) pathways regulated this EMT. Actin stress fibre formation was regulated by PLCγ activation, and was also important for the increase in cell size, migration and altered morphology. MAPK activation regulated migration and E-cadherin expression, indicating that combined activation of PLCγand MAPK is required for a full EMT. We used expression microarrays to assess changes in gene expression downstream of these signalling cascades. COX-2 was transcriptionally upregulated by FGFR1 and caused increased intracellular prostaglandin E2 levels, which promoted migration. In conclusion, we have demonstrated that FGFR1 activation in UC cells lines promotes EMT via coordinated activation of multiple signalling pathways and by promoting activation of prostaglandin synthesis

    Reply To Kenneth B. Yatai, Mark J. Dunning, Dennis Wang. Consensus Genomic Subtypes of Muscle-invasive Bladder Cancer: A Step in the Right Direction but Still a Long Way To Go. Eur Urol 2020;77:434–5

    Get PDF
    In our study the Bladder Cancer Molecular Taxonomy Group collaborated to extend a first consensus report, addressing the need for a consensus molecular classification for muscle-invasive bladder cancer (MIBC) that would support basic research and clinical trials. We provide such a consensus classification and offer a single-sample classifier (http://cit.ligue-cancer.net:3838/apps/consensusMIBC_web)

    Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers

    Full text link
    corecore