6 research outputs found
The Liver Tumor Segmentation Benchmark (LiTS)
In this work, we report the set-up and results of the Liver Tumor
Segmentation Benchmark (LITS) organized in conjunction with the IEEE
International Symposium on Biomedical Imaging (ISBI) 2016 and International
Conference On Medical Image Computing Computer Assisted Intervention (MICCAI)
2017. Twenty four valid state-of-the-art liver and liver tumor segmentation
algorithms were applied to a set of 131 computed tomography (CT) volumes with
different types of tumor contrast levels (hyper-/hypo-intense), abnormalities
in tissues (metastasectomie) size and varying amount of lesions. The submitted
algorithms have been tested on 70 undisclosed volumes. The dataset is created
in collaboration with seven hospitals and research institutions and manually
reviewed by independent three radiologists. We found that not a single
algorithm performed best for liver and tumors. The best liver segmentation
algorithm achieved a Dice score of 0.96(MICCAI) whereas for tumor segmentation
the best algorithm evaluated at 0.67(ISBI) and 0.70(MICCAI). The LITS image
data and manual annotations continue to be publicly available through an online
evaluation system as an ongoing benchmarking resource.Comment: conferenc
Recommended from our members
The Liver Tumor Segmentation Benchmark (LiTS).
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2017 and 2018. The image dataset is diverse and contains primary and secondary tumors with varied sizes and appearances with various lesion-to-background levels (hyper-/hypo-dense), created in collaboration with seven hospitals and research institutions. Seventy-five submitted liver and liver tumor segmentation algorithms were trained on a set of 131 computed tomography (CT) volumes and were tested on 70 unseen test images acquired from different patients. We found that not a single algorithm performed best for both liver and liver tumors in the three events. The best liver segmentation algorithm achieved a Dice score of 0.963, whereas, for tumor segmentation, the best algorithms achieved Dices scores of 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018). Retrospectively, we performed additional analysis on liver tumor detection and revealed that not all top-performing segmentation algorithms worked well for tumor detection. The best liver tumor detection method achieved a lesion-wise recall of 0.458 (ISBI 2017), 0.515 (MICCAI 2017), and 0.554 (MICCAI 2018), indicating the need for further research. LiTS remains an active benchmark and resource for research, e.g., contributing the liver-related segmentation tasks in http://medicaldecathlon.com/. In addition, both data and online evaluation are accessible via https://competitions.codalab.org/competitions/17094