3,468 research outputs found

    The Australian Incident Monitoring Study in intensive care: AIMS-ICU. An analysis of the first year of reporting.

    Get PDF
    Publisher's copy made available with the permission of the publisher Copyright © 1996 Australian Society of AnaesthetistsThe AIMS-ICU project is a national study set up to develop, introduce and evaluate an anonymous voluntary incident reporting system for intensive care. ICU staff members reported events which could have reduced, or did reduce, the safety margin for the patient. Seven ICUs contributed 536 reports, which identified 610 incidents involving the airway (20%), procedures (23%), drugs (28%), patient environment (21%), and ICU management (9%). Incidents were detected most frequently by rechecking the patient or the equipment, or by prior experience. No ill effects or only minor ones were experienced by most patients (short-term 76%, long-term 92%) as a result of the incident. Multiple contributing factors were identified, 33% system-based and 66% human factor-based. Incident monitoring promises to be a useful technique for improving patient safety in the ICU, when sufficient data have been collected to allow analysis of sets of incidents in defined “clinical situations”.U. Beckmann, I. Baldwin, G.K. Hart, W.B. Runcima

    Spin Transport in Disordered Two-Dimensional Hopping Systems with Rashba Spin-Orbit Interaction

    Full text link
    The influence of Rashba spin-orbit interaction on the spin dynamics of a topologically disordered hopping system is studied in this paper. This is a significant generalization of a previous investigation, where an ordered (polaronic) hopping system has been considered instead. It is found, that in the limit, where the Rashba length is large compared to the typical hopping length, the spin dynamics of a disordered system can still be described by the expressions derived for an ordered system, under the provision that one takes into account the frequency dependence of the diffusion constant and the mobility (which are determined by charge transport and are independent of spin). With these results we are able to make explicit the influence of disorder on spin related quantities as, e.g., the spin life-time in hopping systems.Comment: 12 pages, 6 figures, some clarifications adde

    Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators

    Full text link
    Whispering gallery resonators (WGR's), based on total internal reflection, possess high quality factors in a broad spectral range. Thus, nonlinear optical processes in such cavities are ideally suited for the generation of broadband or tunable electromagnetic radiation. Experimentally and theoretically, we investigate the tunability of optical parametric oscillation in a radially structured WGR made of lithium niobate. With a 1.04 /mum pump wave, the signal and idler waves are tuned from 1.78 to 2.5 \mum - including the point of degeneracy - by varying the temperature between 20 and 62 {\deg}C. A weak off-centering of the radial domain structure extends considerably the tuning capabilities. The oscillation threshold lies in the mW-power range.Comment: 4 pages, 5 figure

    A Hard Medium Survey with ASCA. IV: the Radio-Loud Type 2 QSO AXJ0843+294 2

    Get PDF
    We discuss the X-ray, optical and radio properties of AX J0843+2942, a high luminosity Type 2 AGN found in the ASCA Hard Serendipitous Survey. The X-ray spectrum is best described by an absorbed power-law model with photon index of Gamma = 1.72 (+0.3 -0.6) and intrinsic absorbing column density of NH = 1.44 (+0.33 -0.52) x 10E23 cm-2. The intrinsic luminosity in the 0.5-10 keV energy band is ~ 3x10E45 erg s-1, well within the range of quasar luminosities. AX J0843+2942, positionally coincident with the core of a triple and strong (S_1.4 GHz ~ 1 Jy; P_1.4 GHz ~ 9 x 10E33 erg s-1 Hz-1) radio source, is spectroscopically identified with a Narrow Line object (intrinsic FWHM of all the permitted emission lines <= 1200 km s-1) at z=0.398, having line features and ratios typical of Seyfert-2 like objects. The high X-ray luminosity, coupled with the high intrinsic absorption, the optical spectral properties and the radio power, allow us to propose AX J0843+2942 as a Radio-Loud "Type 2 QSO". A discussion of the SED of this object is presented here together with a comparison with the SED of Ultra Luminous Infrared Galaxies, other "Type 2 QSO" candidates from the literature, and "normal" Radio-Quiet and Radio-Loud QSOs.Comment: 10 pages, 7 figures, Latex manuscript, Accepted for publication in Ast ronomy and Astrophysic

    The Australian Incident Monitoring Study in Intensive Care: AIMS-ICU. The development and evaluation of an incident reporting system in intensive care

    Get PDF
    Publisher's copy made available with the permission of the publisher © 1996 Australian Society of AnaesthetistsIntensive care units are complex, dynamic patient management environments. Incidents and accidents can be caused by human error, by problems inherent in complex systems, or by a combination of these. Study objectives were to develop and evaluate an incident reporting system. A report form was designed eliciting a description of the incident, contextual information and contributing factors. Staff group sessions using open-ended questions, observations in the workplace and a review of earlier narratives were used to develop the report form. Three intensive care units participated in a two-month evaluation study. Feedback questionnaires were used to assess staff attitudes and understanding, project design and organization. These demonstrated a positive attitude and good understanding by more than 90% participants. Errors in communication, technique, problem recognition and charting were the predisposing factors most commonly chosen in the 128 incidents reported. It was concluded that incident monitoring may be a suitable technique for improving patient safety in intensive care.U. Beckman, L.F. West, G.J. Groombridge, I. Baldwin, G.K. Hart, D.G. Clayton, R.K. Webb, W.B. Runcima

    Dimensionality effects on non-equilibrium electronic transport in Cu nanobridges

    Full text link
    We report on non-equilibrium electronic transport through normal-metal (Cu) nanobridges coupled to large reservoirs at low temperatures. We observe a logarithmic temperature dependence of the zero-bias conductance, as well as a universal scaling behavior of the differential conductance. Our results are explained by electron-electron interactions in diffusive metals in the zero-dimensional limit.Comment: RevTex, 4 page

    Proton spin relaxation in dilute methane gas: A symmetrized theory and its experimental verification

    Get PDF
    Nuclear spin relaxation in low density methane gas is investigated theoretically and experimentally. A theory is developed in which full account is taken of the tetrahedral symmetry of the molecule. For a nuclear Larmor frequency of 30 MHz, the time evolution of the nonequilibrium magnetization is measured as a function of density between approximately 0.005 and 17 amagats at temperatures of 110, 150, and 295 K. In all cases, exponential relaxation is observed. By using the theory in conjunction with the known spin rotation constants and rotational energy levels of CH4, the measured values of the relaxation rate R1 have been fit very well at each temperature, both for the maximum value of R1 which contains no adjustable parameters and for the density dependence of R1 which contains a single parameter taken to be the collision cross section for molecular reorientation. The centrifugal distortion splittings of the rotational levels are shown to have an important influence on the observed values of R1 at 30 MHz and. more generally on the dependence of the time evolution of the nonequilibrium magnetization on density and frequency. On the basis of the theory, a new type of \u27relaxation rate spectroscopy\u27 is proposed. Non-exponential relaxation is predicted to occur at low densities when the nuclear Larmor frequency is tuned to a centrifugal distortion splitting

    Sampling Distributions of Random Electromagnetic Fields in Mesoscopic or Dynamical Systems

    Full text link
    We derive the sampling probability density function (pdf) of an ideal localized random electromagnetic field, its amplitude and intensity in an electromagnetic environment that is quasi-statically time-varying statistically homogeneous or static statistically inhomogeneous. The results allow for the estimation of field statistics and confidence intervals when a single spatial or temporal stochastic process produces randomization of the field. Results for both coherent and incoherent detection techniques are derived, for Cartesian, planar and full-vectorial fields. We show that the functional form of the sampling pdf depends on whether the random variable is dimensioned (e.g., the sampled electric field proper) or is expressed in dimensionless standardized or normalized form (e.g., the sampled electric field divided by its sampled standard deviation). For dimensioned quantities, the electric field, its amplitude and intensity exhibit different types of Bessel KK sampling pdfs, which differ significantly from the asymptotic Gauss normal and χ2p(2)\chi^{(2)}_{2p} ensemble pdfs when ν\nu is relatively small. By contrast, for the corresponding standardized quantities, Student tt, Fisher-Snedecor FF and root-FF sampling pdfs are obtained that exhibit heavier tails than comparable Bessel KK pdfs. Statistical uncertainties obtained from classical small-sample theory for dimensionless quantities are shown to be overestimated compared to dimensioned quantities. Differences in the sampling pdfs arising from de-normalization versus de-standardization are obtained.Comment: 12 pages, 15 figures, accepted for publication in Phys. Rev. E, minor typos correcte
    • …
    corecore