495 research outputs found

    WKB formalism and a lower limit for the energy eigenstates of bound states for some potentials

    Get PDF
    In the present work the conditions appearing in the WKB approximation formalism of quantum mechanics are analyzed. It is shown that, in general, a careful definition of an approximation method requires the introduction of two length parameters, one of them always considered in the text books on quantum mechanics, whereas the second one is usually neglected. Afterwards we define a particular family of potentials and prove, resorting to the aforementioned length parameters, that we may find an energy which is a lower bound to the ground energy of the system. The idea is applied to the case of a harmonic oscillator and also to a particle freely falling in a homogeneous gravitational field, and in both cases the consistency of our method is corroborated. This approach, together with the Rayleigh--Ritz formalism, allows us to define an energy interval in which the ground energy of any potential, belonging to our family, must lie.Comment: Accepted in Modern Physics Letters

    An amplifier-less acquisition chain for power measurements in series resonant inverters

    Get PDF
    Successive approximation register (SAR) analog-to-digital converter (ADC) manufacturers recommend the use of a driver amplifier to achieve the best performance. When a driver amplifier is not used, the conversion speed is severely penalized because of the need to meet the settling time constraint. This paper proposes a simple digital correction method to raise the performance (conversion speed and/or accuracy) when the acquisition chain lacks a driver amplifier. It is intended to reduce the cost, size and power consumption of the conditioning circuit while maintaining acceptable performance. The method is applied to the measurement of the output power delivered by a series resonant inverter for domestic induction heating

    Evaluation of resampling applied to UAV imagery for weed detection using OBIA

    Get PDF
    Los vehículos aéreos no tripulados (UAVs) son una tecnología emergente en el estudio de parámetros agrícolas por sus características y por portar sensores en diferente rango espectral. En este trabajo se ha detectado y cartografiado rodales de malas hierbas en fase temprana mediante análisis OBIA para elaborar mapas que optimicen el tratamiento herbicida localizado. Se ha aplicado resampling (resampleo) sobre imágenes tomadas en campo desde un UAV (UAV-I) para crear una nueva imagen con distinta resolución espacial. A las imágenes resampleadas (RS-I) se les evaluó la calidad espacial y espectral y la eficacia de nuestro análisis en la detección de malas hierbas. Los resultados de las imágenes RS-I muestran una precisión similar a las imágenes UAV-I siendo factible su utilización en tecnologías de manejo localizado de malas hierbas. Se discuten las ventajas del uso de la técnica de resampling en imágenes UAV.Unmanned aerial vehicles (UAV) are an emerging technology for the study of agriculture parameters due to its characteristics and the availability of embedding sensors with different spectral range. In our study, the detection and mapping of weeds in early phenological stage allowed to design a strategy for the optimizing of herbicide treatment. In this work, resampling is used to create a new version of an image with a different spatial resolution, using real UAV imagery. A spatial and spectral quality evaluation was carried out to resampled images (RS-I), and then, our workflow for weed detection applied. The results showed that RS-I and UAV-I showed similar accuracy on weed detection and thus could be used for site-specific weed management achieving a percentage of savings in the herbicide. Opportunities of using RS-I are discussed

    State-selective electron capture in collisions of ground and metastable N2+ ions with H(1s)

    Get PDF
    9 págs.; 12 figs.; 1 tab.; PACS number(s): 34.70.1e, 34.10.1xA calculation of the electron capture (EC) cross sections for collisions of metastable and ground states of nitrogen2+ ions with H(1s) was presented. The double translational energy spectroscopy technique facilitated the energy change spectrum in EC to be measured for an incident pure beam of ground state ions. It was found that the nuclear wave functions were derived by solving numerically the system of differential equations. It was observed that for impact energies 1 KeV, the impact parameter method was employed, where the nuclei followed straightline trajectories with constant relative velocity V and impact parameter b (R=b+vt). ©2004 The American Physical SocietyI.R. is grateful to the Spanish MCyT for a “Contrato Ramón y Cajal.” This work has been partially supported by DGICYT Projects No. BFM2000-0025 and FTN2000-0911.Peer Reviewe

    Reduced-order models of series resonant inverters in induction heating applications

    Get PDF
    From the controller design framework, a simple analytical model that captures the dominant behavior in the range of interest is the optimal. When modeling resonant circuits, complex mathematical models are obtained. These high-order models are not the most suitable for controller design. Although some assumptions can be made for simplifying these models, variable frequency operation or load uncertainty can make these premises no longer valid. In this work, a systematic modeling order reduction technique, Slowly Varying Amplitude and Phase (SVAP), is considered for obtaining simpler analytical models of resonant inverters. SVAP gives identical results as the classical model-order residualization technique from automatic control theory. A slight modification of SVAP, Slowly Varying Amplitude Derivative and Phase (SVADP) is applied in this paper to obtain a better validity range. SVADP is validated for a half-bridge series resonant inverter (HBSRI) and for a high- order plant, a dual-half bridge series resonant inverter (DHBSRI) giving analytical second-order transfer functions for both topologies. Simulation and experimental results are provided to show the validity range of the reduced-order models

    Expression of deubiquitinating enzyme genes in the developing mammal retina

    Get PDF
    Purpose: Genes involved in the development and differentiation of the mammalian retina are also associated with inherited retinal dystrophies (IRDs) and age-related macular degeneration. Transcriptional regulation of retinal cell differentiation has been addressed by genetic and transcriptomic studies. Much less is known about the posttranslational regulation of key regulatory proteins, although mutations in some genes involved in ubiquitination and proteostasis E3 ligases and deubiquitinating enzymes (DUBs) cause IRDs. This study intends to provide new data on DUB gene expression during different developmental stages of mouse and human fetal retinas. Methods: We performed a comprehensive transcriptomic analysis of all the annotated human and mouse DUBs (87) in the developing mouse retina at several embryonic and postnatal time points compared with the transcriptome of the fetal human retina. An integrated comparison of data from transcriptomics, reported chromatin immunoprecipitation sequencing (ChIP-seq) of CRX and NRL transcription factors, and the phenotypic retinal alterations in different animal models is presented. Results: Several DUB genes are differentially expressed during the development of the mouse and human retinas in relation to proliferation or differentiation stages. Some DUB genes appear to be distinctly expressed during the differentiation stages of rod and cone photoreceptor cells, and their expression is altered in mouse knockout models of relevant photoreceptor transcription factors. We complemented this RNA-sequencing (RNA-seq) analysis with other reported expression and phenotypic data to underscore the involvement of DUBs in cell fate decision and photoreceptor differentiation. Conclusions: The present results highlight a short list of potential DUB candidates for retinal disorders, which require further study
    corecore