1,295 research outputs found

    On the control of a linear functional- differential equation with quadratic cost

    Get PDF
    Linear functional differential equations control with quadratic cos

    Total Photoabsorption Cross Sections of A=6 Nuclei with Complete Final State Interaction

    Get PDF
    The total photoabsorption cross sections of 6He and 6Li are calculated microscopically with full inclusion of the six-nucleon final state interaction using semirealistic nucleon-nucleon potentials. The Lorentz Integral Transform (LIT) method and the effective interaction approach for the hyperspherical formalism are employed. While 6Li has a single broad giant resonance peak, there are two well separated peaks for 6He corresponding to the breakup of the neutron halo and the alpha core, respectively. The comparison with the few available experimental data is discussed.Comment: LaTeX, 8 pages, 3 ps figure

    State Dependent Effective Interaction for the Hyperspherical Formalism

    Get PDF
    The method of effective interaction, traditionally used in the framework of an harmonic oscillator basis, is applied to the hyperspherical formalism of few-body nuclei (A=3-6). The separation of the hyperradial part leads to a state dependent effective potential. Undesirable features of the harmonic oscillator approach associated with the introduction of a spurious confining potential are avoided. It is shown that with the present method one obtains an enormous improvement of the convergence of the hyperspherical harmonics series in calculating ground state properties, excitation energies and transitions to continuum states.Comment: LaTeX, 16 pages, 8 ps figure

    Total 4He Photoabsorption Cross Section Revisited: Correlated HH versus Effective Interaction HH

    Get PDF
    Two conceptually different hyperspherical harmonics expansions are used for the calculation of the total 4He photoabsorption cross section. Besides the well known method of CHH the recently introduced effective interaction approach for the hyperspherical formalism is applied. Semi-realistic NN potentials are employed and final state interaction is fully taken into account via the Lorentz integral transform method. The results show that the effective interaction leads to a very good convergence, while the correlation method exhibits a less rapid convergence in the giant dipole resonance region. The rather strong discrepancy with the experimental photodisintegration cross sections is confirmed by the present calculations.Comment: LaTeX, 7 pages, 3 ps figure

    Quantum oscillations from Fermi arcs

    Full text link
    When a metal is subjected to strong magnetic field B nearly all measurable quantities exhibit oscillations periodic in 1/B. Such quantum oscillations represent a canonical probe of the defining aspect of a metal, its Fermi surface (FS). In this study we establish a new mechanism for quantum oscillations which requires only finite segments of a FS to exist. Oscillations periodic in 1/B occur if the FS segments are terminated by a pairing gap. Our results reconcile the recent breakthrough experiments showing quantum oscillations in a cuprate superconductor YBCO, with a well-established result of many angle resolved photoemission (ARPES) studies which consistently indicate "Fermi arcs" -- truncated segments of a Fermi surface -- in the normal state of the cuprates.Comment: 8 pages, 5 figure

    Infrared cutoff dependence of the critical flavor number in three-dimensional QED

    Full text link
    We solve, analytically and numerically, a gap equation in parity invariant QED_3 in the presence of an infrared cutoff \mu and derive an expression for the critical fermion number N_c as a function of \mu. We argue that this dependence of N_c on the infrared scale might solve the discrepancy between continuum Schwinger-Dyson equations studies and lattice simulations of QED_3.Comment: 5 pages, 1 figure (revtex4), final versio

    Benchmark Test Calculation of a Four-Nucleon Bound State

    Get PDF
    In the past, several efficient methods have been developed to solve the Schroedinger equation for four-nucleon bound states accurately. These are the Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis variational, the stochastic variational, the hyperspherical variational, the Green's function Monte Carlo, the no-core shell model and the effective interaction hyperspherical harmonic methods. In this article we compare the energy eigenvalue results and some wave function properties using the realistic AV8' NN interaction. The results of all schemes agree very well showing the high accuracy of our present ability to calculate the four-nucleon bound state.Comment: 17 pages, 1 figure

    Benchmark calculation of inclusive electromagnetic responses in the four-body nuclear system

    Get PDF
    Both the no-core shell model and the effective interaction hyperspherical harmonic approaches are applied to the calculation of different response functions to external electromagnetic probes, using the Lorentz integral transform method. The test is performed on the four-body nuclear system, within a simple potential model. The quality of the agreement in the various cases is discussed, together with the perspectives for rigorous ab initio calculations of cross sections of heavier nuclei

    Generalized Contact Formalism Analysis of the ⁴He(e,e′pN) Reaction

    Get PDF
    Measurements of short-range correlations in exclusive 4He (e , e ′ p N) reactions are analyzed using the Generalized Contact Formalism (GCF). We consider both instant-form and light-cone formulations with both the AV18 and local N2LO(1.0) nucleon-nucleon (NN) potentials. We find that kinematic distributions, such as the reconstructed pair opening angle, recoil neutron momentum distribution, and pair center of mass motion, as well as the measured missing energy, missing mass distributions, are all well reproduced by GCF calculations. The missing momentum dependence of the measured 4He (e , e ′ p N) /4He (e , e ′ p) cross-section ratios, sensitive to nature of the NN interaction at short-distacnes, are also well reproduced by GCF calculations using either interaction and formulation. This gives credence to the GCF scale-separated factorized description of the short-distance many-body nuclear wave-function
    corecore