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ON THE CONTROL OF A LINPAR DIFFE'ONCE-DIFFERENTIAL
EQUATION WITH QUADRATIC COST

rHaroldJ. Kushner
and

r Daniel I. Barnea,

r 1.	 Introduction.

Let	 H	 be the space of n-vector valued functions 	 y0p)
on the real finite interval	 f -r,0], r > 0, whose com-

Ponents are continuous on	 [-r, 0].	 Suppose	 x(t)	 is an n-vector valued

r
function defined on the real interval	 [ -r, T], T > 0.	 Fix	 t e . [0, T].	 Let

x 	 denote the element of	 H	 with values	 x(")	 at	 cp, cp e [—r.0]. 	 Let

x(•)	 be'the solution of the delay equationtt

o
(1)	 x(t) = A(t)x(t) + B(t)x(t-r) + f c(t,cp)x(t4<p)dcp + D(t)u(t)

-r

where	 A(t), B(t), C(t,(p), D(t),	 and the derivatives of	 B(t)	 and	 C(t,cp)

for	 (t,cp) a [0,T] x [-r,0], and the 'initial condition', x o, is in	 H.

This paper is concerned with finding the control	 u(-)	 which

rminimizes the quadratic functional

m1
(2)	 vu(xt)t) = f [x' (s)M(s)x(s) + u' (s)N(s)u(s)]ds,

t

i

where	 M(s)	 and	 DI(s)	 are continuous ttt. M(s) ? 0, and 	 N(s) > 0	 for

'The prime ' denotes transpose.
tt (1) is treated for simplicity; 	 it will be obvious that replacing the

term	 Bx(t-r) 	 by	 EBix(t-ri )	 demands few changes in the development.
tttM z 0, N > 0	 denote that	 M	 is non-negative definite and	 N	 is

positive definite.



Then the solution x(s) has the representation,
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each s in [01 T]. Special forms have been considered by other authors,

e.g. Krasovskii [1]; however, that work is quite vague and, in particular,

the crucial fact that the relevant 'Ricatti-like' equation has a solution

of the proper form or even some solution is not shown. Since the 'Ricatti'

equation is a rather complicated coupled set of first order partial differ-

ential equations, this question requires some treatment. Theorems 1 and 2

give- the representation of V(xt,t) as a quadratic functional of xt,

Theorem 3 proves the smoothness of solutions to certain partial differential

equations, and Theorems 4 and 5 contain the basic result on iteration in

policy space. Theorem 6 is the final optimization theorem. Unfortunately,

as is common with works on functional-differential equations, some of the

calculations are somewhat tedious. Although the problem has an intrinsic

interest of its own, owing to the appearance of delays in many situations,

the authors interest in it stemmed from an attempt to analyze a problem

where u(t) was actually a functional of noise corrupted observations taken

on the interval [t-r,t]. 	 This was part of an attempt to use the theory of

stochastic delay equations to study certain approximations to non-linear

filters, and to stabilize a system when only noise corrupted observations

are available. The latter investigation led to the consideration of the

problem of the paper. See Bernea [2].

2. A Preliminary Lemma.

Lemmua 1. Let u _ 0 and let the A(t) B(t) ZB(t)/2t ^C (t c^; / at

and C(t,cP) be continuous .

for s?t)
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3

0,
(3) X(S) _ K(s,t)x(t) + f K(s,t,cp)x(t+cp)dcp

—r

where	 K(s,t) = 0	 for	 s < t, K(t,t) = I, J. 	 identity, and	 K(s,t)	 is con-

tinuous in (s,t)	 for	 s ? t.	 For fixed	 t, it satisfies (1), as a

function of	 s	 (with	 u	 0).	 For fixed	 s, it satisfies (as a function

of	 t) the adjoint of (1) (with u = 0), for	 t g s.	 The terms	 2)C(s,t)/as

and	 d'K(s ) t)/at	 are con-linuous for	 s ? t	 except for a finite discon-

tinuity at	 s = t + r.	 Also

ti	 r
(4)	 K(s ) t,cp) = K(s,t+r+cp)B(t+r-Kp) + f K(s,"+p)C(t+cp+p,-p)dp.

(The upper limit	 r	 can be repla ced by min (s-t-q,r).)	 The first term

on the right of	 is zero for	 s < t + r + cp, continuous in	 (s,t,cp)
^W

4
for	 s ? t + r + cp, and its derivatives with respect to	 s, t,(p	 are'

p continuous for	 s ? t.+ r + cp, except at	 s = t + 2r + cp, where there is

a finite discontinuity.	 The second term of (4) is zero for	 s < t	 and

t
is continuous together with its derivatives with respect to 	 s,t,cp	 for

T-es?t?0)	- r;9cp90.

ti
Note.	 K(s, t,cp) = 0 for s < t. For the computations of Theorem

1, it is convenient to redefine
N
K(s,t,cp) for	 s e t	 so that (j) gives

the solution for	 s ? t - r.	 Then define K(s,t,cp) = K(s,t,cp)	 for	 s ? t

and, for	 t -	 s s < t, define the symbol
o

fr K(s,t,cp)x(")4	 to mean

By convention' .	 if	 s _ t + r-+ cp, the derivative with respect, to 	 s	 is
a right-hand derivative, and with respect t;o	 t	 and	 rp	 a left-hand
derivative;	 i.e., the limits are taken within the se flnent 	 s ? t + r + cp.

1



^F

(s,t,q^) is the Dirac B-function b(s-(t-Kp)). Thusx(s); i.e., for s < to K 

for s g t - r,

0
(3^)	 x(s) = K(s .0 t)x(t) + f K(s,t,^)x(t-^cp)dcp.

-r

Proof. The forms (3), (4) and statement-. s concerning • K(s,t)

follow from Halanay (31, P. 369-370. The statements concerning K(s,t,cp)

are straightforward consequences of the properties K(s,t), by virtue of

the .representation (4).

Remark. In (1) let u(t)' take the form

0
(5)	 u(t) = Eu (t )x (t ) + f Fu(t,(P)x(")4

-r

Then

0
(1^)	 X(t) = Au (t)x(t) + B(t)x(t -r) + f Cu(t,cp)x(t+cp)

-r

where

Au(t) = A(t) + D(t)Fu(t)

Cu(tjq)) = C (t, cP) + D (t )FU ( CO.

Let D(t), Fu (t), Fu (t '(P), c®(t)O't and ^F'u(t,q))/d% be continuous. Then,
N	 n.

Lemma 1 remains valid, where we replace K,K by K u,Ku,'resp., the kernels

corresponding to (11).
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3. Representations for the Cost.

By substituting (5) into (2), we obtain

Vu (xt,t) = f T(x9 (s) u(s)x(s))ds
t
T	 o	 T	 o

+ f ds(f fix ' ( s ) u(s,(P)x(s^)) + f ds (f d Px ' (s+cP)Lu( s,CP)x(s))
t	 -r	 t	 -r

T	 o	 o
(6) + f ds (f 	 f dpx' (s-iV)Gu(s,(p, p)x(s+P) )

t	 -r -r

T1 + T + T33 + T4

where the Ti are the terms on the right of (6), and

Mu ( S ) = M(s) + Eu(s)N(s)Eu(s)

(7) u(s9q)) . Eu(s)N(s)Fu(s,(P)

Gu(s,(p ; p) = Fu(s,CP)N(s)Fu (s, p).

Theorem 1. Let u(t) take the form (5), and assume the conditions

of Lemma 1 and the remark following it. In addition let ac (t,cp )/ dp and

2'u (t,cp)/c)p be continuous and Fu(t,q) and Eu (t) tend to zero as t -*T.

Let M(s) and N(s) be symmetric and continuously different iable for

s e [0,T]. Thent,tt

t The Si, Si are defined as the terms on the right of (8).

ttIf (2) contains a terminal cost term x'(T)Zx(T), then (9), (10), (11) would
each contain one additional term (which is not of an integral form). However,
we have not been able to show that the additional terms have the-smoothness
that we will require (i.e. be differentiable).

k
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Vu(xt, t) = sl + s2 + S2 + S3

^ t	 t	 t	 (t ^ x ('^p ) d►p= x^	 P	 x	 + x ► (t)f^	 , )()	 ()	 ()u	 -rQu

(8)
0

+ I x, (KP)Qu(t,(P)x(t)dcP
—r

f
0	 0

+ f &P f dpxt (t+cP)R (t,cp , P)x ( t+ P) •
u

The	 %(t ) , Qu (t) (p), Rjt,cp, p)	 are sums of the terms in, (9),	 (10),	 (11),

reap.

G

T

(9a) ul(t) f Ku ( s, t)Mu (s)Ku (s, t)ds
t

(9b) Pu2(t) =
T	 o

f ds f d rK $ (s, t)Lu (s, T)Ku (s+T, t)
F

t	 -r .

*(90) u3 (t) = Pu2 (t )

(9d) %4(t). =
T	 o	 0

f ds f dcP f dpKu(s+T,t)Gu(s,(p,p)Ku(s+p,t)
t

fk
(10a) Qul(t,cP) =

T	 T
Ku( s , t ) Mu ( s ) Ku ( s ) t, q)) ds =	 Ku(s,t)Mu(s)Ku(s,t,cp)

t

%2(t,cP) =
T	 o

f ds f dTK I (s)t)Lu(s,T)Ku(s+T,t,r•P)
t	 -r

^ min[t-Fr+rA, TJ
(lOb) = (s,t)L(s,t-s+cp)f	 dsKu	 u

t

+
T	 o	 ti

f d s f d TKu (s , T) Iiu (s, T) Ku (. s+ T, t, cp )r

Qu3 (t, cp ) =
T	 o

f ds f dTKu(s+T, t)Lu(s) T)Ku( s, t , cp )	 .

(1.0c)
=

t	 -r
T	 o

f ds	 f dTKI^(sq•T,t)L' (s^1)Ki,(s ,t,V^)
t	 -r

F

C .
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a

t	 .: , ds f Oda f oQdpK (s •I ce t)G ( s a p)K, t,c)
u^E( , cP)	 f	 u'	 ^	 u , ^	 u (s+p

	

t	 -r -r

	

min[ t+rq, T]	 0	 1
(10d)	 f	 ds f daKu (s+a,t)Gu (s,a,t-a+(p)

	

t	 -r

	

0	 0
+ jTds f da j dpKu(s•^a,t)Gu(s,a)p)Ku(s+p,t,q))

	

t	 -r -r

a	 t	 p = TK' / s	 M ^s K /s,, t p s = TKO	 M 
)K	 p(ll	 R ul( ^^1 )	 t u( ) 

t ^^) ul	 .u(	 d)	 t u( fs t f^) ,Ll
s

( ! Us( >t >ds)

T	 oR (t) q) ., p) = f ds jdTK^ (s, t,4"^)]^ (s, T)K (s+ -r, t, 	 p)u2	 t	 -r u	 u	 u

min[t+r+p, T] ti

	

(11b) f 	 dsKu(s,t,cP)Tu(s, t+s+p)
t

T	 o+ f ds f dtiK u ((s ^ t))cp Lu (s, ti)Ku (s+^ q t ^ p)

	

t	 -r
 -

(llc)	 Rua (t'CPq p)	 Ru2 N PI (P) Y

T	 o	 o	 ,^
Ru4(t,cp,p) = f ds f da f cPKu(s4-a,t,cp)Gu(s,a,O)Ku(s+O,t,p)

t

min[ t+r+cp, t+r+p, T]

	

= j	 Gu(s)t-s+cp,t-s+p)ds •^.

t

	

min[t+r+p,T]	 o
(lid)	

t	
ds f doKu(s+a,t,cp G'u(s,a,$t - s+p) 	'.

.	 -r

	

min[ t+r+cp, T]	 o
	• f	 ds j daGu(s,a,t- s+(p)K(s+a,t,p)'^

	

t	 -r 

T	 o	 o• f ds f da f dPK' (s+cz t q))G (s a P)K (s+ P ., t F

	

t	 -r	 -r
u	 ^ ^	 u ^ ^	 u	 ^ ^ )

Furthermore, the T. i have the form (8) where Pu, Qu and Ru

are replaced y Pui., Qui and Rui, reap. Pu, Qu, and R  have bounded

derivatives in their arguments fort 0 s t s T, _r s' (p s 00 _r s p s 0.9

w°
tAt cp = 0 or q) r or p 0 or p = r' or t = 0 9 the derivatives
are replaced by the appropriate one sided derivatives.

1
Eu^

,	 a
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and satisfy (12). 'i.'he derivatives  are ccnti.nunus^ except; for the cp or

p dcriv utive of %(t,cp, p) at cp = p where there mt3y be a finite dis-

continuity ^.

(12a) Pu(T) .: Qu ( T,q)) = Ru (T,CP , P) = 0

(12b) --	 + A' (t)P (t) + P (t)A (t) + A (t 0) + Q,' (t 0)dt	 u	 u	 u	 u	 "u	 u

- M(t) - Eu(t)N(t)F
U

(t) = -MUM

^u (t , cP }
(12c) 2P( t)Cu (t,cp) + A' (t)Qu(t,4)) + K(t,cp)Au(t)	 2.-.	 .-_-

^Iqu (t. )
2

dp

+ Ru (t^cp^0) + Ru {t,O,Cp)	 2EU('t)N(t )Fu(t,cp) _ -2Lu(t,cp)
'.	 ..	

C)Ru
(12d) Cu(t,cp)Qu(t) P) + Qu (t, rP ) Cu (t, P)	 PCP) P)

but
	 - bu
	

= -F t PTtF	 = -G	 ^-( ,cp, P)	 a-p (t,cP, P)	 'u ( , cp } ( } u(t , P)	 u(
t ,4 , P}

(12e) B' (t)Pu (t) - Qu (t jo -r) = 0

B' (t )Q,u (tpcp) - Ru(t: -r), p ) - Bu(t,^, -r)

+ K(t, cp ) B (t ) - 0

Finally the solution Pu (t) p Qu (t,cp), Ru (t )cp, p) is iini.que

within the class of symmetric ttdifferentiable Pu(t), Ru(t,cp, p) and

tFor future rgference, we note that the discont;inui.ty in Ru is in the

terms 
Rut 

and Rua . However, it is easy to verify that Ru2 Fjrd %3
are differentiable in the (1, -1^ -l) direct ion in the (t,cp, p) set
COO T] X [ ..r' p] 2.

ttBy .symmetric M we mean M' (t;) _. M(t); by synu,ietr ic: C(t, ^^,yr), we mean
F	 G(t,cp) p)	 G' (t, PAO

4

k
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differentiable (t, (1)

1

Proof. The evaluation of the T i-terms on the right of (6) is

straightforward by merely substituting the expressions for 'x(s), x(s+cp)

and x(s+p) from (3) into the Ti and separating the result into a sum

of the form of the right side of (8), where the Pui p Quip and Rui are

given by (9) - (11). The right sides of (9) - (11) are obtained, from

the center expressions by replacing R by its definition in terms of I

and the 5-function, and noting that K(s,t,cp) = 0 for s < t. Then (8)

follows by merely summing the T i . The statement concerning the con-

tinuity of the derivatives of Pu,Qu and R  follow from Theorem 3 and

the differentiability of Mu(s), Lu (s,cp) and Gu (s,cp,p) for 0 s s s T,

=r 9 c s 0, -r s p t-: 0.

Now, we evaluate

0
dt[x' (t)Pu(t)x(t)]* ` [Au(t)x(t)+B(t)x(t-r) + J cu(tp9)x(t+cp)dcp] u(t)x(t)

-r

dP (t)
(13a) + xt (t ) (dtu )x (t ) + x , (t)Pu(t)[Au(t)x(t)+B(t)x(t-r)

0
+ ! cu(t,qp)x(t+q)d(p]

-r

°=	 tdt[x' (t ) 1 Qu(t,^p)x(t^p) ] 	 ^t[x' (t) f Qu (t . -r-t)x(,')dT]
-r	 t 

0
[Au(t)x{t)+B(t)x{t-r' + f°cu {t,q))x(")]''' QU(t,cp;.: (t+C)d(p

-r	 -r

(13b) + x'(t)[Qu(t,0)x(t) - Qu(t,-r)x(t-r)

t aQ (t, T-t)
+. f	

u ----%(T)dT]
t-r ^.^
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where

t C-Qu (t, T-t)	 o C)Qu (t ) cp )	 aq (t,CP)

(i3c)	 t	 t	
x(T)dT = fr ---- aL-	 - --u- p	 x(^)4•

-r 
	 ^

Similarly,

d 

I^r
fo4dpx ' ( t+̂ O ) R (t,^, P)x(t+ p) = a f f dTdox t (T)R (t,p-t,Q-t)x(a)

dt
	
-r	 u	

dt t-r t-r	 u

t
(13d)	 = f da[x(t) t Ru (t, O, v-t) - x t (t-r)Ru (t, - r, a- t) ]x(a)

t-r

t
+ f dTxt (T)[Ru(t,T,O)x(t) - Ru(t,T,-r)x(t-r)]

t-r

t t+ f	 f dTdvx t (T) [ a R (t, T-t, a-t)x (a)
t-r t-r	

u

0
= f dp[xt (t)Ru(t,o,p) - xt (t-r)Ru(t,-r,p)]x(t+p)

-r

0
+ f &Pxt (t+(p)[Ru(t,cp,0)x(t) - Ru(t,(p, -r)x(t -r)]

-r

0
+-f f xt (") [-F
	 ^

a - a - a ]j,'
u (t,q) , p)x(t+p)dcpdp.

Note (for reference in Theorems 5, 6), that the representations

(1,3b), (130.), (13d) are valid if Qu (t,:p) only has a uniformly bounded

derivative almost everywhere along each line in the (1, •-1) direction in

the se L Q e[ -r, O ], t c [0 ,.T) ., and if R  (t,cp, p) has only a uniformly

bounded derivative almost everywhere along Each line in the

direction in the .et t a [0) T], (p, p e [-r,0]. These conditions and the

differentiability of Pu (t) assure the differentiability (in t) of Vu(xt,t). 	 I
1
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Next, adding (13a), twice (13b) and (13d), and usi;ig the substitution (13c),

yields an expression for aVu (xt, t)/at. However, &u (xt, t) /at also equals

the negative of the sum of the bracketed integrands in (5), evaluated at

s = t. The equality of these two forms t of aVu (xt,t) /at for all x  e H

and 0 g t s T. implies that the coefficients of like terms in x(t), x(t+gp),

etc., in each form must be equal. This yields (12). Note that, by con-

struction and Theorem 3, (12) has a smooth symmetric solution; i.e., the terms

have continuous derivatives and Pu (s) = Pu(s), Ru (t,(p,p) = Ru (t,p,CP) (except

that the (p,p derivatives of R  are discontinuous at q) = p).

Let P(t), Q(t,cp), R(t,^, p) be differentiable - solutionstt to (12)

with P(t), R(t,q), p) symmetric and define Z(xt,t) by (14). 'then, by re-

versing the argument leading to (12), we get d/dt[Z(x t,t)] = -xt(t)M(t)x(t)

- ut(t)N(t)u(t).

[xt
o^	 o

(t)P(t)x(t) + x t (t)f	 Q(t, (p )x (t+Cp ) drp + f xt (t+g)Qt (t,qp)x(t)d
(14)

-r	 -r

o	 o
+ f d9 f dpxt (t+cp)R(t,(P, p)x ( t+CP) = Z (xtY t ) •

However,

Z (XV T) = Vtt (XT, T) - 0

and

tNote that iiV(xt,t)/ot	 also equals	 -X I (t)M(t)x(l	- ut (t)N(t)u(t).

ttIn fact, it is readily verified that we only need that 	 Q(t,cp)	 and
R(t,cp, p) have uniformly bounded derivatives a. e., in the 	 (1, -1)	 and
(1, -1, -1) directions on the sets	 t e [0, T], cp e [-r. 0] 	 and	 t e [0, T],
(p,p a [-r, 0], resp.	 More generally, for uniqueness we only need that

u(t,^ -t,,"^-t)^at	 and	 aQu(t,cp-t)/&	 be uniformly bounded for almost
all	 cp ., P.

n

w	 ^ 	 a1

 a	 ' 	 a	 .rte
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T

z (Xto t ) - z (XV T) = t [X' (s)M(S)X(S) + u ' (S)N(S)u(s)](I„t
= Vu (Xt) t) - Vu 

(XTy 
T)

or, equivalently

(15)	 Z(Xt,t) = Vu(Xt,t).

Using the identity (15), the representations (14) and (8), and the con-

tinuity of the P, P, Q, Q, R, R, and symmetry of P, P and R, R, it is easily

shown thatt Pu(t) = P(t), Qu (t, cp ) = Q(t, cp ), Ru(t , cp ) P) = R(t,(P, P)3 thus

the uniqueness is proved. Q.E.D.

In the sequel, it will be helpful to separate out the u-dependent

terms in the coefficients of u, Q u and R  in (12b, c ) d) and to eliminate
PV

the u-dependence of the kernels Ku and Ku in (10). Write (12b, c, d) as

dp (t)
(12b')	 at. u - + A t (t) u(t) + Pu (t)A(t) + Qu (t,0) + Qu(t,o) = -14u(t)

(t )C(t cP) + A' (t)Qt ^

	

() + Q' t A t	
^+ 2(t,CP) _
	 (to

12c )	
+ Ru (t ,,WI O) +	 (% O,(P) = -2Lu(t2(P)

C' (t2 CP) p (t, P) + Q r (t OC (t, P) + X '̂t'P) _ ^(t P)

(12d'	

ZRt CP 

P - ^

- p	 Gu(t.(p, P),

where

t In fact, undo- thvor^!,-Lker 11y90the "lis of the last footnote, the equal.:it:i_es
hold between (Zu, Q and RU) R a lmo ;t evcry%hcrc in ((P, P) fox, each t.
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.	 p

(16a)	 M i (t) = M i (t) + El (t)D' (t) %(t) + Pu(t)D(t)Eu(t)

1	 (16b)	 T^,(t,(p) = u(t, qp ) + Pu(t )D (t)Fu(t, cP) + 2[ Eu(t )D ' (t)qU(t,q))

1
	 + %(t,Cp)D(t) u(t)]

(16c)	 Gu(t,cp, P) = Gu (t, (p, P) + Fu(tpT)D ' (t )Q,u (t, P) + Qu(t,cp)D(t)Fu (t, p).

The boundary conditions (13a,e) do not depend on u.

Theorem 2. Suppose the conditions of Theorem 1. Define 0%Puis
^

Q'tis and Rui l as the terms in (9' , 10 1 ., 11 1 ), or equivalently, the re-

spective terms in (9) •-(11) w_ ith K, K, Mup Lu and Gu replacing
N

Ku, Ku, Mu, Lu and Gu, resp. Then

(17)	 P (t ) = E P . (t),	 (t ^) _	 ^ • (t,^), R . ( t ,(p , P) =	 R . (t,^ P)u	 1 ui	 ^ ^	 1 Q'ui	 , 	 1 ui	 '

(9a' }	 P (t) = f K' (s,t)M (s)K(s,t)ds
ul	 t	 u

(9bt)	 P (t) = f Tds f odTK' (s,t)L (s, T)K(s+T, t)

	

U2(t) t	 -r	 u

(9c') Pu3 (t) = Pu2(t )

^	 T	
o	 o

(9d') Pu4(t) = f ds f rdrp f dpK (s+cp, t) *G** 	 p)K(s+p, t)	 a
-r

N
(10a	 Qul(t,q)) = fTdsK' (s,t)iu(s)K(s,%cp)

t
T	 o

Qu2 (t, cp ) = f ds f dTK' (s,t)LU(s,T)K(s+Tyt,q))

	

t	 -r
(lOb')

min [ t+r+cp, T]

	

+ f	 K'(s,t)L:a(s,t-s+q))ds
t

a>	 t.
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(l0c')	 Q (t,cP ) = f Tds f odTK' (f+T,t)Fu(S, T )K( s , t,m)u3	
t	 -x

T	 o	 0
Qu4(t,cp) = f ds j da f dpK' (s+a)t) u(s'a' a)K(s+p,t,q))

	t 	 -r -r

(lOd')	 min[t+q^+r, T]	 o

	

+ j	 ds j dCxK' (s+a,t)Gu(s, a,t - s+cp)

	

t	 -r

T
(11a' )	 Rul(t,cp, p) = f dsK' (s, t,)Mu(s)K(s, t, p)

t
T	 o

Ru2 (t,cp 0 p) _ f ds f dTK' (s,t,cp)Lu (s, T)K(s+T, t, p)

	

't	 -r
(llb')	 min[ t+r+p, T],

	

+ f	 K(s,t,cp)Lu(s,t-s+p)ds
t

(llc')	 Rua (t ."P, p) = Ru2 (t l p ) Cp )

	

o	 oR 4 (t,cP,p) = f ds fda fdPK' (s+a,t,cp)Gu (s J. a,0 ) K(S+P, t ) P)u	 t

min[ t+r+cp, t+ r+ p, T]
(111')

	

	 + f	 Gu(s) t- s+cp, t-s+p)ds
t
min[t+r+p9 T]	 o O

	

+ f	 ds f daK' (s+a,t,cP)Gu(s,a,t-s+p)
	t 	 -r

min[t+r+cp, T]	 o	 N

	

+ f	 ds f daGu (s,a,t-s+cp)K(s+a, t, p).
	t 	 -r

4
Proof. In the integrals (9) in the expression Z Pui (t), replace

1
w	 A A

Ku and Ku by K and K, resp., and Mu, Lu, Gu by u, Lu, Gu, resp.,

A	 A
In Theorem 1, let u = 0, Lo = Lu, M  = Mu, Go = Gu . With this replacement,

the u3 terms in (9) become the A
P ui terms in (9 1 ). Then, by Theorem 1,

4
the Pui(t) are differentiable, and Pui(t)	 u(t) satisfies (12b')(or

1

equivalently, (12b) ). Similarly for	 Q . (t,cP ) = Qu (t,cp) and
1 uz

E

"11V

1
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R (t,^, p) == R (t,cp, p) . Then, by the symmetry of P (t) and R . (t,(pq p)
1 ui	 u	 u	 u

and the uniqueness part of Theorem 1, we have (17). Q.E.D.

Theorem 3. Suppose that N(t), M(t) p A(t)s B(t) ,p C(t'(p), D(t)p

and Eu(t) and Fu (t,cp) satisfy the conditions of Theorem 1. Then this

ui (t) p Qui (t'(p) and Rui (tp cpq p) of (9) - (11) are continuously differ -

entiable	

-

entiabl.e in their arguments for 0 s t 9 T. -r 9 q) 5 0' -r 6 p s 00 except

that the cp or p derivatives of Ru2(t)cP-q p) and Ru3 (t,cp, p) may be dis-

continuous at q) = P. However, Ru (tp(pp p) has as derivative in the

direction.

Proof. Since the evaluations are tedious and straightforward,

we give the details for one 'typical' term only, namely Qu2(t,cp). We note

only that the asserted discontinuity in u2 arises from the latter term of

(llb' ) and that it is easy to verify that (a/at-a/k) applied t o this

latter term yields a continuous function. For future reference note that

the discontinuity is uniformly bounded if the u are. Write

T o
Qu2(t, cp ) = f f Ku(s,t)u(s,T)Ku(s+T,t,cp)dsdT

t ' -r
min[ t+r+cp, T]

+ f	 Ku'(s,t)Lu(s,t-s+cp)ds.
t

F

Recall that u(t,cp) = E' (t)N(t)Fu(t,Cp).
U.

Denote the second term of Qu2 (t,qP )

is continuous in (t,cp). Let t + r + cp > T.

by P(t,(p). Observe that =+,

Then

T	 aL
23(t,cp)/ap = f Ku(s,t)-U(s,t-s+Cp)ds

which is continuous in (t,T) . For t + r + (P < T, we have

.^	 441
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t
F

T	 aL
.^3(t,rp)/k = I{u(t+r4T,t)La (t+r4q,-r) + f Ku(s,t)T-(s,t-s4q)

t

which is continuous in (t,(p) in the desired range. In addition,

Lu(t+vV,-r) -> 0 as t + r + (p -+ T, since F u (t,(p) -> 0 as t -> T. Thus

13(t,q)) has continuous cp derivatives for t,cp e (0,T]  x [ -r, 0] . The de-

tails for Z3(t,q))/oh are similar and are omitted.

Write the first term of qu2(t,cp) as

T
a(t,yp) = f h(s,cp,t)ds

t

where

0
h(s )cp,t) = f	 Ku(s,t)Lu(s, •r)Ku(s+T,t,cp)ds.

max(t-sqq, -r)

If t - s + (P > 0, the lower limit is replaced by zero.

For each fixed t ? 0 let k(s,^,t) satisfy (a): k(s,cp,t) is

continuous on [t,T] X [-r,0]; (b): There is a bounded measurable function

k^(s,cp,t) so that for each t and each s - not in some null set in [t,T],
T

k
(P

(s,cp,t) = 2k(s,q),t)/4 for almost all cp in [-r,0]; (c): f kcp(s,cp,t)ds

is continuous on [0,T] X [-r,0]. Then fkcp (s,cp,t)ds = a^apfTk(s,(p,t)ds
t	 t

and is continuous on [0,T]  x [ -r, 0] . Let k (s,cp, t) = h (s,cp, t ), and note

that h(s,(P,t) is continuous for each fixed t. Let t - s + cp < -r. Then

o
61 (s )qP,t) =_ ah(s,cp,t)/acp = f "(s,t)u(s,T)	 (s+ •r,t,cp)ds which is con-

-r

tinuous in all three variables.

NoV:, let 0 > t - s + cp > -r. Then
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8	 '^) _	 s t = K (s t)L (s t-s K'	 t2(8)^^	 u	 u) u(', ^^)

ti
0

+ f	 X f (s,t)Lu (s, T)V-(s+T,^,q))dT.
t-sip

ti
The first term of 82 (s )9, t) is zero since K, (t+cQ, t,^) = 0 and the second

tends to 81 (s,(P,t) as t - s + 	 -r. It can now easily be verified that
(a) - (c) hold and that a(t,cp) has a continuous (p derivative on [0,T] x

[-r,0]. The details for ra(t,cp)/at are similar and are omitted. Q.E.D.

4. Iteration in Policy Space.

In Theorem 4, the basic result on 'iteration in policy space', we

will require the time derivative of the function V u (xt,t) evaluated on the
path corresponding to a control w (and written e-9w(xt,t) ) ; to be specific,

the time derivative of Vu (xt,t) along the path corresponding to w is de-
fined by

0

	

Vu' w (xt,t) _	 [xl (t)Pu(t)x(t) + 2' (t ) ! Qu(t,(v)x (t+Cp)dCp
-r

(7.$)	 0 0
+ f f x' ( 'gyp )Ru (tA 1 P)x (t+ p)dp4 ] .

-r -r

where for x(t) _ cbc(t)/at we use the derivative evaluated along the trajectory

corresponding to w; i.e.,

0
(19)	 X(t) = A(t)x(t) + B(t)x(t-r) + D(t)w(t) + f c(t,(P)x(t+V)dcp.

-r

Using (19) in the calculations (13), we have

I

'o,

y
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.`	
0

vu0w (xt,t) = 2w' (t)D(t) u(t)x(t) + 2W' (t)D' (t) ! Qu(t,(P)x(t+(P)dcp
-r

+ x' t dP-- u-- + A I (t)%(t)+ %(t)A(t) + (t 0) + ' (t 0) ( x(t)() dt   	 s

0

+ x' (t) ! r 2
( a/ aE - a/k)Qu(t, CP) + 2 (t)C(t,cp)

-r

(19a)	 + A t (t )Qu (t, cp ) + %(t,cp)A(t)

+ Ru (t2(p,0) + Ru(tj0,cp)]x(t-tg)dcp

0 0

+ ! ! x' ()[ ( a/at-a/ap-a/ap)Ru (t) cp, p)
—r —r

+ C' (t,(p)Q"(t, p) + Q' ( t,cp ) C (t, p)]x(t+p)d(pdp•

Theorem 4. Let u have the form (5), and define fP) w (xt,t,) by

(18). Assume the conditions on A, B, C O D, Eu, Fu, N and M of Theorem 1,

and let N(s) be positive definite and M(s) -positive semi-definite in

[O,T], and let D(t) be continuously differentiable in [0,T]. The control

w which attains the minimum in (22) has the form (5), and

0

(20a)

	

	 w(t) = w(t)x(t) + f Fw(t,cp)x(t+cp)dcp
-r

where

EW(t) = -N-1 (t)D I (t)%'(t)

w(t,cp) _ -N - (t)D' (t)Qu(t,cp)'o

Ew(t) and Fw(t,cp) satisfy the conditions on the Eu(t) and Fu (t,(p) in
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Theorem 1. • Also

(21) Vw(xt, t) ;g Vu (xt, t)

for all x  a H, and t e (0)T].

(22) H(xt)t) = min [Vu)w (xt,t) + XI(t)M(t)x(t) + W I (t)N(t)w(t)).
w

Remark. Note that, with w = u, the bracketed term in (22) is

zero by the definition of Vupu (xtst) = ap(xt)t)/&.

Proof. In computing the minimum in (22), only the terms

0
k  (t)Pu(t)x(t) + x  (t)Pu(t)X(t) + 2x' (t ) ! Qu(t,Cp)x(t+V)d(p

_r

(23a)
+ w' (t)N(t)w(t)

or, equivalently, only the terms

0
2wt (t)n' (t)Pu(t)x(t) + 2W' ( t )^' (t ) I Qu(t,cp)X(t+(P)^

_r

(23b) + w' (t)N(t)w(t)

need be taken into account. The other terms in the brackets in (22) do

not contain w by (19a). The w(t) minimizing (23b) is of the form

(20a), where F;w and w satisf„r (20b). By the hypothesis and by

Theorem 1, the coefficients % and 
w satisfy the smoothness

,
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conditions r-iquired in Theorem 1 on the E u,Fu there.

Now, for any w of the form. (20), Vu (XV T) = Vw (xV T) = 0

and

fTVu'w(x , t) = Vu(x V T) - Vu(x ,t)•
t	 t	 T	 t

The bracketed term in (22), with the minimizing w . inserted, is non-

positive - since the bracketed term is zero if w is replaced by u.

Thus

0 a;f tu,v(x' , s)ds + f T[X 1 (S)M(S)X(S) + w 1 (s)N(s)w(s) ]ds
t	 s	 t

or

0 a , Vu(xT, T) - Vu(xt, t) + Vw(xt, t) - Vw(xT, T) = -Vu(xt) t) + Vw(xt, t)

s

and (21) holds. Q.E.D.

Suppose the conditions on	 A, B, C, D, N and' M	 of Theorem 4.

Let	 uo satisfy the conditions in the remark below Leauaa 1.	 Define the

improved control n	 recursively in terms of un-1 by the method of

Theorem 4.	 Then, by Theorem It (where we write	 En = Eu , Fn = Fu
u n	 n

n)Vn = V
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0
(24)	 U  = En (t)x(t) + f Fn(t,(p)x(t+<p)dcp

-r

En+l (t)	 N-1(t)Dr(t)Pn(t)

(^5)	 Fn+l (t, CP) = -N l (t)D ' (t) (t,Cp)

and, for all t e (0, T] and x  a H,

(26 )	 ei(xt,t) s Vn(xt^t)•

...
Next, it is shown that (26) implies that the n,Qn,Rn and	 M

un converge.

,.
Theorem 5. Assume the conditions of Theorem 4. The Pl(t),

Q,h (t,q) ), Rrl (t,^, p), En (t ), and Fn (t,c)) are uniformly bounded and con-41

..	 verge pointwi se to functions P(t),,  Q (t,(p ), R (t,cp, p), E (t) and F (t,cp ),

resp. P(t) and R(t )cP,p) are asymmetric and

.^	 o

Vu (xti t ) = x ' (t)P(t)x(-t) + x' (t )S ^,(t,q))x(t4p)4
-r

O

(27)	 + f x' (t+cp)Q' (t,cP)x(t)dcp

O O

+ f f x' (t+cp)R('•,(P, p)x(t+p)dgwdp
-r -r

where u is the limit of the un;
R

^ 	 gyp'
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1 d

0
(28)	 u(t) _ H(t)x(t) + f F(t,fp)x(t4g)dcp.

Furthermore, she n, Gn and Ln in (9 1 ) (11 1 ) converge pointwise and

are uniformly bounded, and theP, Q and- R are the limits of the sums

of the ni, Qni and Rni , reap.

Finally, let v be the (1,-1) direction in the ( • ,,(p) set

[0, T] x [ -r, 0], and ar the (1, -1, -1) direction in the (t,yp, p) set

[0,T] x [-r,0 ] 2. Then the derivatives W(t)/k, aQ(t,cp)/ov, c)R(t,(p,p)/&

exist and satisfy

(29a) + A' (t)P(t) + P(t)A(t) + $(t ) 0) + Q' (t ) 0) 	 -M(t)

2,r-2c t	 + 2P(t )C(t , cp ) + A' (t )Q(t)w) + Q' (t,T)A(t)

(29b) + R(t ,P 0) + R(t 0 g) = -2L(t cp)

(^9^)	
F	

t p + C, (t,^)Q(t, P) + Q^ (t,^)c(t, P) = -G(t,"p, p)

where the M,, L and G areetthe n, Gn, n, with En and Fn replaced by

their limit. Also

B' (t)P(t) .. Q(t. _r) = 0

(^9d)	 B' (t )Q(t ) (p )	 R (t, -r,^) - R' (t,,P, -r)

+ Q' (t,(p)B(t) = 0.

a%(t)/d-t, 2Qn (t,cp)eav and aRn (t,(p, p)/&- converge to 8P(t)/ct,
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Proof. The other statements follow readily from the uniform

boundedness and convergence of the n, % and Rn and Theorems 1 and 2;

hence only tilts will be shown.

We note only

(chat-a/k-a/ap)Rn (t,cp, 1

if the Pn, Qn, and Rn

If the Pn, Qn and Rn

then the (t, r, Q, resp. )

that ( a/at- a/a^)Qn(t,^P) = 47 aQn (t,cp)/av, and

D) = N F 2Rn (t,CP, p)/& ' These derivatives converge

do, and are uniformly bounded by (12) and (121).

and their (t,v,ct, resp.) derivatives all converge

derivatives of the limits ere the limits of the

(t,r,ar, resp.) derivatives. In (26), let x(t+cp) = 0 for q) j 0. Then (26)

°-	 implies that x' Pn+l(t)x s x f %(t)x for any vector x. Hence, n(t) con-

verges pointwise to a symmetric measurable matrix P(t). Since the diagonal
+^ r

4M	 elements Pn,ii(t) are non-increasing, andpn'ij (t) 6 Max Pn,ii(t), the

Pn (t) are uniformly bounded.

Let x(cp) be any continuous function on [-r, 0] with x(0) = 0.

Then for such x	 26 implies that

0 0	 0 0 .

(3o)	 r r x' (q ) Rn+l(t, cP, P) x (P)4dp 5 I I x ' (9)R ( t, cP, P)x(p)^dp•

By the continuity of the Rn (t,(P, p), (30) holds if x (cp) is a Dirac

5-function. In particular, if -r < quo < 0^ -r < p  <0 and x(cp)

xb (cp'-(P 0 ) + y8(cP-po), then (30) and the fact that Rn(t,cp, p) = Rn (t .9 p,ep)

yields

x1 ^+l (t,mo,cp o)x + y' Rn+1 (t' Poi Po)y + Nf Rn+l (t )g) oJ' Po)y
(31)	 s_ x' Rn ( t,cpo,(Po )x + y'Rn (t, po, po)y + 2x' Rn (t,(P o, Po)y
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But, by continuity of the Rn (t,p,p), (31) holds for any q) o, Po in [-r,0].

Let y = 0. Then, as shown for the Pn, (31) implies that the %(t,q),cp)

are uniformly bounded and converge to some R(t,(p,rp). Using this and (31)

and the arbitrariness of x,y implies that the Rn (t,(p, p) are uniformly

bounded and that Rn (t,cp,p) converges to some R(t,g p,p). By similar reason-

ing, (26) implies that, for each cp o a [-r,0],

x' Pn+l(t)x + 2x' %+1 (t 'cp o )Y + Y' Rn+1(t),90.9%)Y
(32)

s x' Pn (t)x + 2x' Qn (t,cp o )' Y + Y' Rn(t,cPo,q)o)Y•

Using (32) and the conclusions concerning n and Rn, we may deduce that

the Qn+l (t,(p) converges to some Q(t,cp) and are uniformly bounded. Q.E.D.

Corollary. For any control w(t) which gives bounded continuous

paths x(t), and which is bounded for any bounded coz_,tinuous initial condition
u w

Vu' w(xt,t) exists and V 
n' 

(xt,t) converges to it for any continuous initial

condition. The ^.lass of w(t) includes all. controls which are linear in x 

and have bounded coefficients.

Note. Recall that e$w(x
ti
t) is the time derivative of Vu(xt,t)

along xt paths corresponding to the control w.

u
Proof. Since V n (xti t) converges to Vu (xt,t) for any continuous

^u ,w
initial condition, we only need to show that V n (x tit) is uniformly bounded

A ,w
(in n) and converges for any continuous initial condition. V n (xt,t) is

^
given by (lga) with u  replacing .ng un, and Theorem 5 implies that V n,w(xt,t)

converges. Q: E. D.

F
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'5. The Optimality Theorem.

Theorem 6. Let w(x,t,) be any control  for which a solution tM

(1) is defined on [0,T] for any initial condition, and let u be given

by (28). Then Vu (xt, t) s Vw (xt, t) for all t, and initial conditions xt.

Let u = w and Eu and Fu be given by (28). Then the set of equations

(29) has a unique solution (for symmetric P(t) and R (t,qi,p)) and de-

termines the optimal control w.

Proof. Calculating the minimizing w in . (32) (see Theorem 4 for

terminology)

(32)	 min [Vu' w (xt,t) + x' (t)M(t)x(t) + w' (t)N(t)w(t)]
w

yields (see (19a))

0

w (xt, t) = -N-1 (t)D' (t)[P(t)x(t) t I Q(t ,(p )x (	 )dqp],
-r.

which is exactly u. Also the bracketed term in (32) is zero if u replaces

w. Thus, for any u ^ W. we have

(X t) + x' (t)M(t)x(t) + w' (t)N(t)w(t) ?. O

or

0 !-5f TVu' w (x , s)d's + f T[x' (s)M(q)x(s) + w' (s)N(s )w(s) ]ds
t	

s	
t

Vu (xt,t) t Vu (xT, T) + Vw (xt, t) - Vw (xV T)
R

T

W
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