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ON THE CONTROL OFf A LINEAR DIFFERENCE-DIFFERENTIAL
EQUATION WITH QUADRATIC COST

Harold J. Kushner
and

Daniel I, Barneua

l, Introduction,

Let H be the space of n-vector valued functions' y(®) =

(y,(®)y++.,¥,(®))" on the resl finite interval [-r,0], r >0, vhose com-

ponents are continuous on [-r,0]. Suppose x(t) is an n-vector valued

function defined on the real interval [-r,T], T> 0. Fix t ¢ [0,T). Let
x, denote the element of H with values x(t+p) at ¢, ¢ € [-r,0]. Let

t
x(+) be ‘the solution of the delay equation''

o

(1) x(t) = A(t)x(t) + B(t)x(t-r) + [ e(t,0)x(twp)dp + D(t)u(t)
-r

where A(t), B(t), C(t,9), D(t), and the derivatives of B(t) eand C(t,9)

for (t,9) e [0,T] x [-r,0], end the 'initial condition', x_, is in H.

This paper is concerned with finding the control u(+) which

minimizes the quadratic functional

m

(2) V(x,, t) = {[x'(s)M(s)x(s) + ut (s)N(s)u(s)]ds,

where M(s) and N(sg) are continuous+*f, M(s) 2 0, and N(s) >0 for

*The prime ' denotes transpose.

ft (] L] . L] L] (] .
(1) is treated for simpliecity, it will be obvious that replacing the
term Bx(t-r) by ZBix(t-ri) demands few changes in the development.

iy 2 O, N> 0 denote that M is non-negative definite end N is
positive definite.




each s in [0,T]. Special forms have been considered by other authors,
e.g. Krasovskii [1l], however, that work is quite vague and, in particular,
the crucial fact that the relevant 'Ricatti-like' equation has a solution

of the proper form or even some solution is not shown., Since the 'Ricatti!
equation is a rather complicated coupled set of first order partial differ-
ential equations, this question requires some treatment. Theorems 1l and 2
give the representation of V(xt,t) as & quadratic functional of x,,
Theorem 3 proves fhe smoothness of solutions to certain partial differential
equations, and Theorems 4 and 5 contain the basic result on iteration in
policy space, Theorem 6 is the final optimization theorem, Unfortunately,
a8 is common with works on functional-differential equations, some of the
calculations are somewhat tedious. Although the problem has an intrinsic
interest of its own, owing to the appearance of delays in many situations,
the authors interest in it stemmed from an attempt to analyze‘a problenm
wvhere u(t) was actually a functional of noise corrupted observations taken
on the interval [t-r,t], This was part of an attempt to use the theory of
stochastic delay equations to study certain approximations to non-linear
filters, and to stabilize a system when only noise corrupted observations

are availabie. The latter investigation led to the consideration of the

problem of the paper. See Barnea [2].

2, A Preliminary Lemnma,

Lemua 1. Let u= 0 and let the A(t), B(t), 9B(t)/ot, x(t,p,/t

and C(t,p) be continuous, Then the solution x(s) héé.tﬁevfepfééenfétibn,

for s 2t

— ’



O .
(3) x(s) = K(s,t)x(t) + [ K(s,t,0)x(t+p)dp
A -r

where K(s,t) = 0 for s < t, K(t,t) = I, tle identity, and X(s,t) 1is cun-

v

tinuous in (s,t) for s =z t, For fixed t, it satisfies (1), as &

function of s (with u = 0), For fixed s, it satisfies (as a function

of t) the adjoint of (1) (with u = 0), for t s s. The terms &(s,t)/ds

and K(s,t)/dt are continuous for s z t except for a finite discon-

tinuity at s = t+ r, Also

r :
K(s, t+r+9)B(t+r+p) + [ K(s, txp+p)C(t+op+p, -p)dp.
-(p

() K(s,t,0)

(The upper limit r can be replaced by min (s-t-g,r).) The first term

on the right of (4) is zero for s <t + r + continuous in s,t
) P s Cy®

for szt+ r+ ¢, and its derivatives with respect to s,t,p are

continuous for sz t.+ r + ¢, except at s =t + 2r + @, where there is

a finite discontinuity. The second term of (It) is zero for s <t and

is continuous together with its derivatives with respect tof s,t,¢ for

Tzszt

v
o
t

]
1A

S
A
o
.

Note. i(s,t,@) = 0 for s < t. For the computations of Theorem
1, it is convenient to redefine K(s,t,p) for s <t so that (3) gives
the solution for s =z t - r, Then define 'ﬁ(s,t,¢) = i(s,t,@) for szt

o
and, for t - * £ s < t, define the symbol fr’ﬁ(s,t,m)x(t+¢)d¢ to mean

tBy conventioﬁ, if s=+t+ r+ @, the derivative with respect to s is
a right-hand dcrivative, and with respect to t and ¢ a left-hand

derivative; i.e., the limits are taken within the sepment sz ¢t + r + @,



x(s); i.e., for s<t, ﬁ(s,t,m) is the Dirac &-function 8&(s-(t+p)). Thus

for szt ~-r,

(3) x(s) = K(s,6)x(t) + [ R(s,t,0)%(bs0)do.
-r

Proof, The forms (3), (4) and statements concerning . K(s,t)

follow from Halanay [3], p. 369-370. The statements concerning i(s,t,@)
are straightforward consequences of the properties K(s,t), by virtue of

the representation (U4).

Remark, In (1) let u(t) teke the form

(5) a(t) = B,(Ox(8) + [ 3, (6,0)x(ts0)cy
Then
1) k() = A, (0%(8) + B(EI(t-0) + / C,(5,0)x(1s0)
where
'Au‘(t) = A(t) + D(t)Eu(t)'

¢, (5,9) = C(,0) + D(t)F, (t,0).

Let D(t), E (%), F, (t,9) D(t)d and bFu(t,cp),/at be continuous. Then,

Lemma 1 remains valid, where we replace K,K by Ku,Ku,'resp., the kernels

corresponding to (1'), . .
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3. Representations for the Cost.

By substituting (5) into (2), we obtain

T

Vu(xt,t) = [x'(s)Mu(s)x(s)]ds

T T

ds{f:dvx' (s)L, (5,9)x(s+@)} + {-. ds{fodtpx' (s+@)L! (5,9)x(s))
- -r

T o

ds(/ ap [ dex! (9)3, (,9, 0)x(547))
- -r

[
t
+ [
t
(6) + ]
t

T1+T2+T +Th

3

where the T, are the terms on the right of (6), and

Mu(s) = M(s) + E"l(s)N(s)Eu(s)
(7) L,(s,9) = E}(s)N(s)F,(s,0)

6, (5,9,0) = FL(2,0)N(s)F, (s,0).

Theorem 1, Let u(t) take the form (5), and assume the conditions

of Lemma 1 and the remark following it. In addition, let &(t,9)/dp end

&‘u(t,cp)/&p be continuous and Fu(t,cp) and Eu(t) tend to zero as t - T.
Let M(s) and N(s) be symmetric and continuously differentiable for

s € [0,T]. The \EA

TThe Si,§i are defined as the terms on the right of (8).

1-

t1e (2) contains a terminal cost term x'(T)Zx(T), then (9), (10), (11) would
each contain one additional term (which is not of an integral form), However,
we have not been able to show that the additional terms have the' smoothness
that we will require (i.e. be differentiable).




(8)

. N
\ (xt,t) =8 + Sy+ Sy+ 5

' o]
= x' ()P (t)x(t) + x' (t) Q (t,0)x(t+o)dp

(o]

+ [ % (419)QY (£,0)%(6)%
-r

o)
+ fockp ] apxt (44)R (%,9,p)x(t+p).

The P, (t), Q,(t,0), R (t,0,0) are sums of the terms in (9), (10), (11),

resp.

(92)

(9v)

(9e)
(94)

(10a)

(10b)

(1.0c)

T
Pul(t) 22 { Kl'l(s,t)Mu(s)Ku(,t)ds

T
Puz(t) = i ds {:dTKa(s,t)Lu(s,T)Ku(s+7,t)

Pu3(t) = Pﬁa(t)

T o o)
Puh(t) = i As {rd$ {rde&(s+¢,t)Gﬁ(s,¢,p)Ku(s+p,t)
T . T S
Qq (t,0) = { K\'J(s,t)Mu(s)Ku(s,t,q))ds = £ K! (s, t)M (s)K,(s,t,0)
T o]

Q(t,0) = [ as {rm;,<s,t>Lu<s,r)?u<s+r,t,w>

min[ t+r+p, T]

ct ck —

dsKﬁ(s,t)Lu(s,t-s+¢)

T o]

+ [ ds [ dTKﬁ(S,T)LU(S,T)KU(S+T,t,¢)
-r :

T o A
Qu5(t,¢) = [ ds {rdTK&(s+T,t)Lh(§,T)Ku(s,t,w)
T o - e
ds frdTK&(s+T,t)LL(s,T)Ku(s,t,w)

ct— ct




T o o a
Q (,0) = { ds frda frde;l(s-Fa,t)Gu(s,a, P)K (s+p,t,0)
min[ t+r+p, T] o
ds [ daK"J(s+a,t)Gu(s,a,t-s+cp)
- -r

3+
ct—
3

(10d)

o ) -
as [ da [ de;l(sm,t)Gu(s,a,p)Ku(s+p,t,cp)
r -r

T

TA AN ~ ~
(112) Ry (60,0) = [ Rie, 00, ()R (5,8, 0)as = [ Ki(e, 4,00, (61K, (5,8, p)as
. |

o
A A
ds fd'rKI'J(s,t,q:)Lu(s,T)Ku(s-w,t, p)

/
t
Ru2(t’q)) p) = { -

min[t+r+p, T] .,

(11b) dsK{l(s, t,cp)Lu(s,t-s+p)

- ct

T o . ~
ds frd'rK{l(s,t,cp)Lu(s,T)Ku(s+'c,t, p)

(11e)  R5(%,9,0) = Riy(t,0,0)

T o o A A
i ds [ da [ dﬁKL(s—l-a,t,cp)Gu(s,a,B)Ku(s+B,t, )
-r -r

1

Ruh (t)(p: p)

min[t+r+p, t+r+p, T]

et |

Gu(s, t-s+,t-s+p)ds +

| min[ t+r+p, T] o . .
(114) ds [ do&({l(s+a,t,cp)(}u(s,a,t-s+p)
-r .
min[ t+r+p, T] 0 ~
ds [ doG (s,0,t-840)K(s+,t,p)

-r

+

+
e S <
3

0

o ~ ~
ds fr da [ d,BKl'J(s+o[,t,q>)Gu(s,cx,B)Ku(s+B,t,p)
- -r

Furthermore, the T, have the form (8) where Pu,Qu and Ru

are replaced by Pui’Qui ard R,;» Tesp. Pu’Q‘u’ ard Ru have bounded

1.

derivatives in their arguments for AO sts T, -r£¢ =0, -rsps0,

Tat =0 or ¢ =r or p=0 or p=1r or t =0, the derivatives

are replaced by the appropriate one sided derivatives.




and satizfy (12). The derivalives are centinuous, except for the ® or

B s 1]

p derivative of Ru(t,cp, p) at @ = p where there may be a {inite dis-

continuity *.

(122) Pu(T) = Qu(T:‘P) = Ru(T:‘P: p) = 0

ap, (t)
(120) T * AL(B)B,(6) + B (8)A (6) + Q (£,0) + Q! (4,0) =
- M(5) - B, (6)N(6)E,(8) = -, (8)
| R, (£,0)
(12¢) 2p (t)C,(t,0) + A (£)Q (t,0) + Q) (t,9)A (t) + 2 g

R, (%,9)
- 2 dp

.+ Ru<t)cp’o) + Ru(t'.gog‘q)').": "ZE{I(t.)N<t)Fu.<t9<p) = -abu(t,cp)
(124) c: (6,0)Q (t,0) + Q! (t,9)C (t,p0) + g‘i(t,cp, P)
au &u
- '@"(t)q)) p) - E—(t,tp,f)) = "F.:J(t,CP)N(t)Fu(t, p) = -Gu(t,(P, p)
(12¢) B! (t)P,(£) - Q(t,-r) = O
B! (t)Qu(t;q’) - Ru(t: -r,0) - R"l(t:q’; -r)

+ Q1 (6,0)B(t) = 0

Finally, the solution Pu(t), Qu(t,cp), R, (t,0,0) 1is unique

v : PR & A .
within the class of symmetric''differentiable P (t), R (t,9,0) and

For future r¢fercnce, we note that the discontinuity in Ru is in the
terms Ru

t
2 and Ru3' However, it is easy to verify that Ru2 and Ru'j

are differentiable in the (1,-1,-1) dircetion in the (t,0,p) sct
. 2 ’
[0,T] x [-r,01%

hLBy symmetric M we mean M'(t) = M(t), by symmetric G(t,n,), we mean

G(t,0,0) = G' (L,p,9).



differentiable Qu(t,m).

Proof. The evaluation of the T,-terms on the right of (6) is
straightforward by merely substituting the expressions for 'x(s), x(s+p)
and x(s+p) from (3) into the T, and separating the result into a sum
of the form of the right side of (8),where the Pui’ Qui’ and Rui are
given by (9) - (11). The right sides of (9) - (11) are obtained from
the center expressions by replacing R by its definition iﬁ terms of ¥
and the 8-function, and noting that ﬁ(s,t,¢) = 0 for s <t., Then (8)
follows by merely summing the Ti' The statement concerning the con-
tinuity of the derivatives of Pu’Qu and R, follow from Theorem 3 and
the differentiability of Mu(s), Lu(s,m) and Gu(s,m,p) for 0ss =T,
-rs¢ =0, -rsps0,

Now, we evaluate

o)
Lt (6)2, (6)x(6)] = [A(6)x(6)+B(6)x(b-x) + [ C, (6,0)%(brp)apI, (6} (t)
-r

& (t ,.
(13a) | + x1 (%) (30 ))X(’c) + x' (£)P, (6)[A, (6)x(5)+B(t)x(t-r)

+ 1 0, (6,0)(b+0)d0)
-r

o] t
S (%) I 9 (5,0)x(510)] = dix (v) [ 9y, v-t)x(mar)

o)
= [A,(8)x(tWB(E)x(t-r} {:cu(t,q»)x(wnv{rczuw,cp).:(wp)a«p

(130) + 3 (8)[Q(6,0)x(8) = Qut, -r)x(t-r)

t &u(t) T't)
+-{_r-5rm—w——~—x(T)dT]
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where

t % (t,7-1) o[&u(t,w) E),u(t.&)ﬂ
3 x{7)dT = - (t+)dp.
(13c) {;-r St (t)dr {r P 7 —lx )

Similarly,
'd o o a F ot
a—t-[{r {r»d:pdpx' (tr:-cp)Ru(t,cp,p)x(t-l-pil = I ‘o i-rd'rdcx' (T)Ru(t, p-t,0-t)x(0)
t .
(130) = [ ao[x(t)'R,(£,0,0-8) - X! (6-r)R,(t,-,0-t)}x(0)
t-r
t
+ [ dwx (T)[Ru(t,'r,o)x(t) - Ru(t,'r,-r)x(t-r)]
t-r
1 vt (9128 (t, 5=, 0-t)x(a)
+ ' s T=0,0-T)x(0
t-rt-rTox 'r[-agu o

o
[ dp[x! (t)Ru(t,o,p) - x! (t-r)Ru('b, -r,p) Jx(t+p)
-y .

(o]
+ [ apx! ('b-!-fp)[Ru(t,Q’},O)D-’.‘(t) - Ru(t,q’,‘r)x(t‘r)]

-7 .
I N Y
+ {r {rx (v - 5 - 3plBa(t:9sP)x(t+o)dpde.

Note (for reference in Theorems 5, €), that the representations
(13b), (13c), (13d) are valid if Qu(t,cp) only has a uniformly bounded
derivative almost everywhere along each line in the (1,-1) direction in
the sel ¢ ¢[-r,0], t ¢ [0,T], and if R (t,9,p) has only a uniformly
bounded derivative almost everywhere along .e:ach ‘line in the (1,-1,-1)
direction in the set % ¢ [0,T], 9,0 € [-r,C]. These conditions and the

differentiability of Pu(t) assure the differentiability (in t) of Vu(xt,t).



Nexi, adding (13a), twice (13b) and (13d), and usiiig the substitution (13c),
yields an expression for avu(xt,t)/at. However, avu(xt,t)/ab also equals

the negative of the sum of the bracketed integrands in (5) , evaluated at

t. The equality of these two forms' of avu(xt,t)/at for all x e H '
and 0 s t s T, implies that the coefficients of like terms in x(t), x(t+9),
ete,, in each form must be equal, This yields (12). Note that, by g_'o_x_'x_-
struction and Theorem 3, (12) has a smooth symmetric solution, i.e., the terms
have continuous derivatives and Pu(s) = P{l(s), Ru(t,cp,p) = Ru(t,p,cp) (except
that the @,p derivatives of R are discontinuous at ¢ = P).

Let B(t), &(t,0), R(t,0,0) be differentiable solutions'' to (12)
with ?(t), ﬁ(t,cp,p) symmetric and define Z(xt,t) by (14). Then, by re-
versing the argument leading to (12), we get d/dt[Z(xt,t)] = -x' (t)M(t)x(t)

- ut (t)N(t)u(t).

o) A A
[x' (6)B(t)x(t) + x* (£)) Q(t,0)x(t+)dp + fox' (t+0)Q' (t,9)x(t)dp

r -r
(14) o o A
+ [ dp [ dex (t+p)R(t,P, P)x(t+p) = Z(xt:t)'
-r -r
However,
Z(Xp,T) = V(X T) = 0

and

-r

Note that avu(xt,t)/at also equals -x'(L)M(t)x(%) - u' (t)N(t)u(t).

™1n fact, it is readily verified that we only need that &(t,p) and

ﬁ(t,q),p) have uniformly bounded derivatives a.e., in the (1,-1) and
(1,-1,-1) directions on the sets t e [0,T], ® € [-r,0] and t e [0, T],
o,p € [-r,2], resp. More generally, for uniqueness we only need that
a{u(t,@-t, n=t)/ot and R, (t,9-t)/3 be uniformly bounded for almost
all ¢,p.
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T
Z(xgyb) - Z(X, 1) = £ [x' (s)M(s)x(s) + w' (s)N(s)u(s)]ds

u u
=V (xt,t) -V (XT,‘I')

or, equivalently
u
(15) Bk, t) = V' (x,,t).

Using the identity (15), the representations (14) and (8), and the con-
tinuity of the P,5,q,8,R,R, and symetry of P,P and R,R, it is easily
shown that' P (t) = B(t), Q (t,0) = A(t,0), R (4,0,0) = R(t,p,0); thus
the uniqueness is proved., Q.E.D; |

. In the sequel, it will be helpful to separate out the u-dependent

terms in the coefficients of P, Q and R in (120, c, d) and to eliminate

the u-dependence of the kerrels K  and Eu in (10). Write (12b, c, d) as
dp (t)
(12o) T (£)B (t) + P (L)A(t) + Q (£,0) + Q! (+,0) = M (%)

& (t)C(t,(P) + At (t)Q ('b ®) + Q! (t,CP)A(t) + aQu(t,(p) ?:.u(t,q))

(]2(!') + Ru(-t,(p,O) + Ru(t,O,CP) = "eLu(t)cP)

C* (£,9)Q, (%, 0) + @' (£,0)C(t,0) + a*(’%% p) g;(tgp, 0)

(123') = .
- Epi;bm = 'Gu(t.-q}: ),

vhere

t
In fact, und(v tho Awaaker hyooth(,lk of the last footnote, the equalities
hold beWC€n Q and K, R almost everywhere in Gy, p) for cach t.
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-

(16a) " ﬁu(t) = M (6) + B! (6)D' (£)B,(£) + B, (£)D(t)E, (t)
(16b) P (6:9) = L_(5,9) + B_(6)D(6)F (£,0) + B! (6)D' (£)Q, (¢,9)

+ Q(5,0)D(5)E (£)]

(16) G (t,0,0) = G_(t,0,0) + F! (5,0)D' (£)a(t,0) + Q(£,0)D(£)E, (t,0).

The boundary conditions (13a,e) do not depend on u.

Theorem 2, Suppose the conditions of Theorem 1. Define §ui’

R ————
Q,; &nd ﬁui’ as_the terms in (9',10',11'), or equivalently, the re-

A A

spective terms in (9) - (11) with K, 'f{', M, L, end au replacing

Ky Kp Mp L, &nd G, resp, Then

L, L, L
An) By (8) = T B (0), Qy(6,0) = T 8y (4,0) R, (40,0) = L By (4,9,0)

-~ T A
(9a') Pul(t) = { Kf(s,t)Mu(s)K(s,t)ds
| A T o .

! t) = ! .
(9b!) Pu2( ) £ds {rd-rK (s,t)Lu(s,'r)K(s-i T,t)
(9¢') Pg(t) = Po(t)

~ T o o
(9d') Poy(t) = [ ds [ dp [ dek' (s+9,t)G (s,9,p)K(s+p,t)
t -r -r '
(10a) 8, (6,9) = [ asK' (s, £)0t (YK (s, £50)
' t

. T o R ’
ng(t,cp) = { ds frd'tK' (s,t)Lu(s,T)T{(s+1',t,cp)
(10b') .
min[ t+r+p, T] ”
+ { K'(s,t)Lu(s,t-sw)ds



1k

A T ° ~
(10c') - Q,u5(t,cp) = [ ds [ d1K (f+'r,t)ﬁ"1(s,'r)l((s,t,tp)
" t -r A
" T o o .
Q, (t,9) = [ ds [ da [ deK' (s+q,t)G, (5,0, P)K(s+p, t,0)
t -r -r
(L04') min[ t+p+r, T] o a
+ [ s [ daK'(s+ogt)Gu(s,a,t-s+¢)
t -r
A T ~ A ~
(11a') %l(t:q): p) = .{ dSK'(s:t)q‘)Mu(s)K(S;t; P)
A T © ~ A ~ !
Ruz(t,w,p) = { ds [ dTK'(s,t,¢)Lu<S,T)K(S+T,t,p)
' -r
(11v) min[ t+r+p, T]., ~
+ [ K(s,t,w)Lu(s,t-s+p)ds
t
(1le') §u3(t)cp, p) = R{lg(t, P,P)
~ T © o ~ ~ ~
R, (t,9,0) = [ ds [ da [ dBK' (s+0,t,0)G (s,0,B)K(s+B,t,p)
t -r -r
min[t+r«$,£+r+p,T]A
(114') + [ Gu(s,t-s+¢,t-s+p)ds
t
minf t+r+p, T] o ~
+ [ ds [ daK'(s+ogt,¢)Gﬁ(s,a,t-s+p)
t \ -Tr
min[t+r+p, T] o -~
+ [ ds [ daG, (s, 0, t-s+0)K(s+a,t,0).

t -r

: L
Proof, 1In the integrals (9) in the expression 7, P, (t), replace
1

~ ~ A A ~
K, and K, by K and KX, resp., and My Ly G, bBY _Mu’ L, G, resp..
A A A N R
In Theorem 1, let u = 0, Lo= L, My =M, G, = G, With this replacement,

the P . terms in (9) become the gui terms in (9'). Then, by Theorem 1,

=

~ the ﬁui(t) are differentiable, and 2, ﬁui(t) = ﬁu(t) satisfies (12b')(or

=

b ~
equivalently, (12b)). Similarly for ¥ Qui(t,m) = Q,(t,9) and
1
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h A A A A
LR ;(t,9,0) = R (t,0,0). Then, by the symmetry of P,(t) and R (t,9,P)
1 .

and the uniqdéness part of Theorem 1, we have (7). Q.E.D.

Therrem 3, Suppose that N(t), M(t), A(t), B(t), c(t,9), D(t),

and Eu(t) and Fu(t,cp) satisfy the conditions of Theorem 1, Then the .

P ;(t), Q,(t,0) and Rui(t,cp,p) of (9) - (11) are continuously differ-

entiable in their arg:uﬂents for 0stsT) -rs9 0, -rsps 6, except

that the @ or p derivatives of R ,(%,9,0) aund RuB(t,cp,p) may be dis-

contiguous at @ = p. Howevér, R, (t,9,0) has a derivative in the (1,-1,-1)

direction,

Proof, Since the evaluations are tedious and straightforward,
we give the details for one 'typical' term only, namely Q,ue(t,fp). We note
only that the asserted discontinuity in R112 arigses from the latter term of
(11b') and that it is easy to verify thet (3/3t-3/p) applied to this
latter term yields a continuous function. For future reference note that

the discontinuity is uniformly bounded if the Lu are, Write

T o
Q,o(t,0) = { 'erl'l(s,t)Lu(s,T)Ku(s+'r,t,cp)dsd'r
min[ t+r+g, T)

+ {; Kt (s,t)L, (s, t-s+¢)ds.

Recall that Lu(t,(p) = E{l(t)N(t)Fu(t,cp).

Denote the gecond term of Quz(t,cp) by PB(t,p). Observe that *+

is continuous in (t,p). Let t+ r+ o > T, Then

( )/ / u( 'a’—( )
) - K' \ ’t ,t" d
B(t,p)/ _ s,t) s s+ )ds

which is continuous in (t,9). For t+ r + ¢ < T, we have
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.33(‘5#9)/39 = K{l(t*r'"p,t)l:'u(um:'r) + £ K&(s,t)gp—(s,t-sw)
which is continuous in (t,p) in the desired range. In addition,
Lu(t+r4q>,-r) -0 as t+ r+ 9 -T, since Fu(t,cp) -0 as t -7, Thus
B(t,p) has continuous ¢ derivatives for t,p € [0,T) X [-r,0]. The de-

tails for PB(t,p)/dt are similar and are omitted.

Write the first term of Qua(t,cp) as

T
a(t,e) = {: h(s,p,t)as

where

h(s,0,8) = | K (8,8)T, (5, DK, (547, ,0)ds.
max (t-s4p, -r)
If ¢t -5+ ¢ >0, the lower limit is replaced by zero,
For each fixed t z O let k(s,p,t) satisfy (a)! k(s,p,t) is
continuous on [t,T] X [-r,0], (b): There is a bounded measurable function
k(p(s,cp,t) 50 that for each t eand each s - not in some null s;t in [t,T],

kq)(s,(p,t) = k(s,p,t)/dp for almost all ¢ in [-r,0]; (c): fkcp(s,cp,t)ds
t

- T T
is continuous on [0,T] X [-r,0]. Then 1f_' kq)(s,cp,t)ds = /»p[ k(s,p,t)ds
t
end is continuous on [O,T] X [-r,0]. Let k(s,p,t) = h(s,p,t), and note
that h(s,p,t) is continuous for each fixed +t. Let t - s + ¢ < -r. Then
X

o
5, (s,0,t) = dh(s,p,t)/d0 = {rKl'J(s,t)Lu(s,f)#{ﬁw,t,q})ds which is con-

tinucus in all three variables.

Now, let 0>t - s+ ¢ > -r, Then
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8,(5,0,) = %&wﬁl = K1 (s, £)L (5, t-s40)R _(t40,t,0)

o

)
+ [ K! (s,t)L (s, 7)s—(s+T,%,p)dT,
tostp O u »
The first term of 8,(s,p,t) is zero sinue iu(t-l-qa,t,cp) = 0 and the second
tends to Sl(s,tp,t) a8 t -s+@! -r, It can now essily be verified that
(a) - (c) hold end that a(t,p) has a continuous ¢ derivetive on [0,T] X

[-r,0]. The details for du(t,p)/dt are similer and are omitted. Q.E.D.

4k, Iteration in Policy Space.

In Theorem 1&, the basic result on 'iteration in policy space', we
will require the time derivative of the function Vu(xt,t) evaluated on the
path corresponding to a control w (and written Vu’w(xt,t)); to be specifie,
the time derivative of Vu(xt,t) along the path corresponding to w is de-

fined by

‘-,u,w( _ o ' °
xprt) = Flx' (IR, (B)x(8) + 207 () [ Q (5,0)x(vs0)cp

(28) o o ‘
+ [ [ x' (W0)R, (t,0,0)x(t+p)drdp]

-r I

where for X(t) = M(t)/d3t we use the derivative evaluated along the %Lrajectory

corresponding to w, i.e,,

(1) &(t) = At)x(t) + B(E)x(bor) + D(EYw(s) + [ C(t,0)x(tso)dp.
-r

Using (19) in the calculations (1%), we have
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S

T (x, £) = 20 (EID(LIR, (E(t) + 2 (6)D" (8) ] Q,(,0)x(t+0)ap
-r

aP. (t -
+ x' (t)lft“( D n (8)P(t) + B, (t)A(t) + Q(t,0) + Q{l(t,olix(t)

o
+ x'(8) [ [ Y %-9/P)Q (t,0) + 2R (t)C(t,0)

-
(192) + A1 (£)Q, (£,0) + Q) (+,0)A(t)

+ Ru(t‘:q).vo) + Ru(t,O,q>)]x(t+<p)d(p

. |
b IS X (09I (3/3-3 -/ IR (4,0, 0)

«r =T
+ €' (£,9)Q,(t,p) + Q' (£,9)C(t, 0)1x(t+p)dpde.

Theorem 4, Let u have the form (5), and define "/u’w(x,c,t) by

(18). Assume the conditions on A, B, C, D, B, F, N and M of Theorem 1,

end let N(s) be positive definite and M(s) - positive semi-definite in

[0,T], aad let D(t) be continuously differentiable in [0,T]. The control

w which attains the minimm in (22) has the form (5), and

o
(20a) w(t) = Ew(t)x(t) + [ Fw(t,cp)x(t+<p)dcp
-r

where

E,(t) = -N""(t)D' (6)P,(t)

F(5,0) = -N"(6)D' (£)Q,(t,0):

E (t) and F,(t,0) satisfy the conditions on the E (t) and F (t,9) in

Ty M 18 T -
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Theorem 1, Also -

®ownommem
Y

(21) V(x,,t) 5 VV(x,,t)

for all x, e H, and % ¢ [0,T].

(22) H(x,,t) = min [ﬁ“'w(xt,t) + x (B)M(E)X(E) + w' (B)N(E)w(E)].
w

Remark, Note that, with w = u, the bracketed term in (22) is

zero by the definition of \'Iu’u(xt,'b) = BVu(xt,t)/at.

Proof, In computing the minimum in (22), only the terms

o]
%1 (6)B, (£)x(t) + x' (6)P, (£)k(t) + 2k’ (¢) eru(t,cp)x(w)dcp

(232)
+ W (L)N(t)w(t)

or, equivalently, only the terms

o)
20 (6D (6)R, (6)x(8) + 20" (110" (6) S Q, (5,)x(br9)0

(25v) + W' (£)N(t)w(t)

need be taken into account. The other terms in the brackets in (22) do
not contain w by (19a). The w(t) minilﬁizing (23b) is of the form
(20a), where E, and F_ satisfy (20b). By the hypothesis and by

Theorem 1, the coefficients Ew and Fw satisfy the smoothness
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conditions.r"!quired in Theorem 1 on “the E,F, there.
Now, for any w of the form (20), Vu(xT, 1) = Vw(xT,T) =0

and

T
U, W u
{ T, 1) = V(g T) - Vi(x,,t).

The bracketed term in (22), with the minimizing w inserted, is non-
positive - since the bracketed term is zero if w is replaced by u.

Thus
T T .
oz [ Vu’v(x's,s)ds + { [x' (s)M(s)x(s) + w'(s)N(s)w(s)]ds
t

or

02 V (xyT) = Vi(xy,t) + V(x,t) - V(x,T) = Wx,, 1) + VWix,,t)

and (21) holds: Q.E.D.

Suppose the conditions on A, B, C, D, N and M of Theorem b,
Let u, satisty the conditions in the remgrx bglow Lemmna 1, Define the
improved control w ‘recursively in terms of u o4 by the method of
Theorem 4, Then, by Theorem % (where we write ‘En =E ,F =F,

n u
n n
V= vun)



2l

(24) | u

B (6)x(8) + | F_(,0)x(t0)dp
-r

B, (t) N7 (6)D! (6)B_(t)

(25) -1
Fn+l(t’m) = -N (t)D'(t)Qh(t:w)

and, for all t e [0,T] end x € H,
(26) Vhx,, 1) = Vix,,b).

Next, it is shown that (26) implies that the P9 ,R, end

un converge, '

Theorem 5. Assume the conditions of Theorem L, The Pn(’c),

Qn(t,(p), Rn(t,q), P), En(t), and Fn(t,q’)) are uniformly bounded and con-

verge pointwise to functions P(t), Q(t,p), R(t,p,p), E(t) and F(t,9),

resp. P(t) and R(t,p,p) are symmetric and

' o
Vg, t) = ' (£)P(6)x(8) + x' (£)f Q(t,0)x(t+)dy
-r

o :
x! (t++0)Q' (t,0)x(t)dp
r . |

(27) + [

) |
+ [ % ()R(,p, 0)x(t+0)dpdp

-r -T

where u 3is the limit of the un:
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(28) u(t) = E(6)x(t) + [ P(t,0)x(b1p)do.
L . -r

Furthermore, *he ﬁn’ an and f‘n in (9') (11') converge pointwise and

sre wniformly bounded, and the P, @ and R are the limits of the sums

of the P ., Q; and R ;» resp.

Finally, let v be the (1,-1) direction in the (%,p) set

[0,T] x [-r,0], and ¢ the (1,-1,-1) direction in the (t,p,p) set
[0,T] X [-7,0]%. Then the derivatives JP(t)/3, (t,)/dv, R(t,0,p)/d

exist and satisfy

(298) S+ a(8)P(5) + P6IACS) + Q(5,0) + Q' (5,0) = -fi(t)

202 RUL2) 4 op(t)e(t,0) + A (£)a(t,0) + Q' (£,0)A(E)

(29%) , T
.+ R(t,9,0) + R(t,0,0) = -2L(t,9)

(29e) 3 Dl8®:0) 4 01 (t,0)a(t,0) + Q' (£,0)C(8,0) = -G(t,9,0)

A ~ A A N A
Where the M, L and G are the M, G, L, with E, &and F  replaced by

their limit, Also

B' (6)P(t) - Q(f,-r) = O
(292) C B(8)A(t,9) - R(t,-1,0) - B (t,9,-7)
+ Q' (t,9)B(t) = o.

 (t)/ ek, R, (t,9)/v end | B'Rn(t,cp;p)/aqg converge to dP(t)/dt,
R(t,p)/d and &R(t,9,p)/d, resp.




%)

Proof, The other statements follow readily from the uniform

‘boundedness and convergence of the P, Q and R, and Theorems 1 and 2]
hence only this will be shown, .

We note only that (3/3t-¥/¥)a_(t,0) = N2 R (t,9)/d, end
(9/3t-9/ %-/ )R _(t,0,0) = N3 &R_(t,9,0)/d. These derivatives converge
if the P, Q, end R do, and are uniformly bounded by (12) and (12').
If the P, @ eand R and their (%,v,0, resp.) derivatives all converge
then the (t,r,q, resp.) derivatives of the limits cre the limits of the
(t,r,0, resp.) derivatives, 1In (26), let x(t+p) = 0 for ¢ # 0. Then (26)
implies that x'Pn+l(t)x §:x'Pn(t)x» for any vector x. Hence, Ph(t) con-
verges pointwise to a symmetric measurable matrix P(t). Since the diagonal
elements pn’ii(t) are non-increasing, and lpn,ij(t)' s mgx pn,ii(t)’ the
Pn(t) are uniformly bounded.

Let x(¢) bve any continuous function on [-r,0] with x(0) = O.

Then, for such x(p), (26) implies that

’ o O : o O .
(30) T [ x' (@R, (60,p)x(e)dpde s [ [ x' (9)R, (t,0,0)x(p)dpdp.

4

=Y T -0 -0

By the continuity of the Rn(t,m,p), (30) holds if x(p) is a Dirac
8~-function., In particular, if -r<¢@,<0, -r<p <0 and x(o) =
xs(cp'-cpo) + yB‘(cp-po), then (30) and the fact that R!(t,9,0) = R (t,0,0)

yields

x'Rn.;.l(t:Q?o:(Po)x + Y'Rm_l(t, Pys po)y + &'Rn-i-l(t’g)O’ 90)3’

31 ' '
(1) S xR (4,0,,0,)% + V'R (6,0,,0007 + 2R (6,00,0,)7
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But, by continuity of the Rn(t,m,p), (31) holds for any Do p6 in [-r,0].
| Let y = O. Then, as shown for the P (31) implies that the Rn(t,¢,¢).
are uniformly bounded and converge to some R(t,w,w). Using this and (31)
end the arbitrariness of x,y implies that the R (t,p,p) are uniformly
bounded and that R (t,p,p) converges to some R(t,p,p). By similar reason-

ing, (26) implies that, for each ¢_ e [-r,0],

. x'P o (8)x + 2x'Q . (8,0.)y + V'R, (6,0,0,)Y
(32) Vo
s x'P (t)x+ 2x'Q (8,0 )y + V'R _(t,9_,0 ).

Using (52) and the conclusions concerning Ph and Rn, we may deduce that

the Q ,(t,») converges to some Q(t,p) and are uniformly bounded. Q.E.D.

Corollary., For any control w(t) which gives bounded continuous

paths x(t), and which is bounded for any bounded continuous initial condition
(J . .u ,w
Vu’w(xt,t) exists and V (xt,t) converges to it for any continuous initial

condition. The ~lass of w(t) includes all controls which are linear in X

and have bounded covefficients,

Note. Recall that ¥'#"(x,,t) is the time derivative of v (x,t)

along x

" paths corresponding to the control w,

| u
Proof. Since V n(xt,t) _converges to Vu(xt,t) for any continuous
T u_,w

.0' ® o‘ (3 [ ,
initial condition, we only need to show that V n (xt,t) is uniformly bounded
‘ i, W
(in n) and converges for any continuous initial condition. v ™ (xt,t) is
| : : u_,w
given by (19a) with u, replacing u , and Theorem 5 implies that il (x,,%)

converges, Q.E.D.



"5, The Optimality Theorem.

Thaorem 6., Let w(x,t) be any control for which a solution tn

(1) is defined on [0,T] for any initial condition, and let u be given

by (28). Then \f‘(xt,t) < Vw(xt,t) for all t, and initisl conditions x,.

Let u=w and E and F_ be given by (28). Then the set of equations

(29) has a unique solution (for symmetric P(t) and R(t,p,p)) and de-

termines the ggtimal control w,

Proof, Calculating the minimizing w in (32) (see Theorem L4 for

terminology)

(32) min [{r“’w(xt,t) + %' (E)M(t)x(t) + W' (£)N(t)w(t)]
w

yields (see (19a))

o
-1
w(x,,t) = -N 7(t)D' ()[P(t)x(t) + [ Q(t,0)x(t+o)dp],
. / r
which is exactly wu. Also the bracketed term in (32) is zero if u replaces

w. Thus, for any u # w, we have
VH¥(x,,t) + xt (E)M(E)x(E) + w' (EIN(t)w(t) 2.0

or

T T
£ V¥ (x ,5)as + £ [x' (s)M(8)x(s) + w' (s)N(s)w(s)]ds

o -
"

L

-Vu(xt,t) * Vu(xT, T) + Vw(xt:t) - Vw(xT: T)
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"or, equivalently, Vw(xt, t) 2 Vu(xt,t). The last sentence of the Theorem

follows from Theorems 5 and 2, Q.E.D.
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