668 research outputs found

    Spin Transport in Disordered Two-Dimensional Hopping Systems with Rashba Spin-Orbit Interaction

    Full text link
    The influence of Rashba spin-orbit interaction on the spin dynamics of a topologically disordered hopping system is studied in this paper. This is a significant generalization of a previous investigation, where an ordered (polaronic) hopping system has been considered instead. It is found, that in the limit, where the Rashba length is large compared to the typical hopping length, the spin dynamics of a disordered system can still be described by the expressions derived for an ordered system, under the provision that one takes into account the frequency dependence of the diffusion constant and the mobility (which are determined by charge transport and are independent of spin). With these results we are able to make explicit the influence of disorder on spin related quantities as, e.g., the spin life-time in hopping systems.Comment: 12 pages, 6 figures, some clarifications adde

    Relationship between solidification microstructure and hot cracking susceptibility for continuous casting of low-carbon and high-strength low-alloyed steels: A phase-field study

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2013Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior. © 2013 The Minerals, Metals & Materials Society and ASM International

    Doping, density of states and conductivity in polypyrrole and poly(p-phenylene vinylene)

    Get PDF
    The evolution of the density of states (DOS) and conductivity as function of well controlled doping levels in OC_1C_10-poly(p-phenylene vinylene) [OC_1C_10-PPV] doped by FeCl_3 and PF_6, and PF_6 doped polypyrrole (PPy-PF_6 have been investigated. At a doping level as high as 0.2 holes per monomer, the former one remains non-metallic, while the latter crosses the metal-insulator transition. In both systems a similar almost linear increase in DOS as function of charges per unit volume c* has been observed from the electrochemical gated transistor data. In PPy-PF_6, when compared to doped OC_1C_10-PPV, the energy states filled at low doping are closer to the vacuum level; by the higher c* at high doping more energy states are available, which apparently enables the conduction to change to metallic. Although both systems on the insulating side show log(sigma) proportional to T^-1/4 as in variable range hopping, for highly doped PPy-PF_6 the usual interpretation of the hopping parameters leads to seemingly too high values for the density of states.Comment: 4 pages (incl. 6 figures) in Phys. Rev.

    Theory of electric-field-induced spin accumulation and spin current in the two-dimensional Rashba model

    Full text link
    Based on the spin-density-matrix approach, both the electric-field-induced spin accumulation and the spin current are systematically studied for the two-dimensional Rashba model. Eigenmodes of spin excitations give rise to resonances in the frequency domain. Utilizing a general and physically well-founded definition of the spin current, we obtain results that differ remarkably from previous findings. It is shown that there is a close relationship between the spin accumulation and the spin current, which is due to the prescription of a quasi-chemical potential and which does not result from a conservation law. Physical ambiguities are removed that plagued former approaches with respect to a spin-Hall current that is independent of the electric field. For the clean Rashba model, the intrinsic spin-Hall conductivity exhibits a logarithmic divergency in the low-frequency regime.Comment: 19 pages including figure

    Ac hopping conduction at extreme disorder takes place on the percolating cluster

    Get PDF
    Simulations of the random barrier model show that ac currents at extreme disorder are carried almost entirely by the percolating cluster slightly above threshold; thus contradicting traditional theories contributions from isolated low-activation-energy clusters are negligible. The effective medium approximation in conjunction with the Alexander-Orbach conjecture leads to an excellent analytical fit to the universal ac conductivity with no nontrivial fitting parameters

    Raman spectra of olivine measured in different planetary environments

    Get PDF
    Missions to bodies of our solar system are coming up and imply new instrumentation to be applied remotely and in situ. In ESA’s ExoMars mission the Raman Laser Spectrometer (RLS) will identify minerals and organic compounds in Martian surface rocks and soils. Here we present the results of a Raman study of different olivines with variable Fo and Fa contents. We chose olivine because it is a rock forming mineral and is found as an abundant mineral in Martian meteorites. We determined the Raman spectra in different environmental conditions that include vacuum, 8 mbar CO2 atmosphere and temperatures between room temperature and 10 K. These environmental conditions resemble those on asteroids as well as on Mars and Moon. Thus our study investigates the influence of these varying conditions on the position and band width of the Raman lines, which is to be known when such investigations are performed in future space missions

    Polarons and slow quantum phonons

    Full text link
    We describe the formation and properties of Holstein polarons in the entire parameter regime. Our presentation focuses on the polaron mass and radius, which we obtain with an improved numerical technique. It is based on the combination of variational exact diagonalization with an improved construction of phonon states, providing results even for the strong coupling adiabatic regime. In particular we can describe the formation of large and heavy adiabatic polarons. A comparison of the polaron mass for the one and three dimensional situation explains how the different properties in the static oscillator limit determine the behavior in the adiabatic regime. The transport properties of large and small polarons are characterized by the f-sum rule and the optical conductivity. Our calculations are approximation-free and have negligible numerical error. This allows us to give a conclusive and impartial description of polaron formation. We finally discuss the implications of our results for situations beyond the Holstein model.Comment: Final version, 10 pages, 10 figure

    Characteristic features of anharmonic effects in the lattice dynamics of fcc metals

    Full text link
    The dispersion in the entire Brillouin zone and the temperature dependence (right up to the melting temperature) of the anharmonic frequency shift and phonon damping in a number of fcc metals is investigated on the basis of microscopic calculations. It is found that the anharmonic effects depend sharply on the wave vector in the directions Γ\Gamma-X, X-W, and Γ\Gamma-L and, in contrast to bcc metals, the magnitude of the effects is not due to the softness of the initial phonon spectrum. It is shown that the relative frequency shifts and the phonon damping near melting do not exceed 10-20%. The relative role of various anharmonic processes is examined, and the relation between the results obtained and existing experimental data is discussed.Comment: 4 pages, 5 figures, LaTe
    corecore