24 research outputs found
The effect of ionic composition on acoustic phonon speeds in hybrid perovskites from Brillouin spectroscopy and density functional theory
© The Royal Society of Chemistry 2018. Hybrid organic-inorganic perovskites (HOIPs) have recently emerged as highly promising solution-processable materials for photovoltaic (PV) and other optoelectronic devices. HOIPs represent a broad family of materials with properties highly tuneable by the ions that make up the perovskite structure as well as their multiple combinations. Interestingly, recent high-efficiency PV devices using HOIPs with substantially improved long-term stability have used combinations of different ionic compositions. The structural dynamics of these systems are unique for semiconducting materials and are currently argued to be central to HOIPs stability and charge-transport properties. Here, we studied the impact of ionic composition on phonon speeds of HOIPs from Brillouin spectroscopy experiments and density functional theory calculations for FAPbBr3, MAPbBr3, MAPbCl3, and the mixed halide MAPbBr1.25Cl1.75. Our results show that the acoustic phonon speeds can be strongly modified by ionic composition, which we explain by analysing the lead-halide sublattice in detail. The vibrational properties of HOIPs are therefore tuneable by using targeted ionic compositions in the perovskite structure. This tuning can be rationalized by non-trivial effects, for example, considering the influence of the shape and dipole moment of organic cations. This has an important implications for further improvements in the stability and charge-transport properties of these systems
Dental profile of patients with Gaucher disease
BACKGROUND: This study was conducted to determine whether patients with Gaucher disease had significant dental pathology because of abnormal bone structure, pancytopenia, and coagulation abnormalities. METHODS: Each patient received a complete oral and periodontal examination in addition to a routine hematological evaluation. RESULTS: Gaucher patients had significantly fewer carious lesions than otherwise healthy carriers. Despite prevalence of anemia, there was no increase in gingival disease; despite the high incidence of thrombocytopenia, gingival bleeding was not noted; and despite radiological evidence of bone involvement, there was no greater incidence loss of teeth or clinical tooth mobility. CONCLUSIONS: These data represent the first survey of the oral health of a large cohort of patients with Gaucher disease. It is a pilot study of a unique population and the results of the investigation are indications for further research. Based on our findings, we recommend regular oral examinations with appropriate dental treatment for patients with Gaucher disease as for other individuals. Consultation between the dentist and physician, preferably one with experience with Gaucher disease, should be considered when surgical procedures are planned
Legislative proposal in Italy to facilitate contacts between deceased organ donor families and transplant recipients
Second-Order Semiclassical Perturbation Theory for Diffractive Scattering from a Surface
10 págs.; 3 figs.; 2 apps.A second-order semiclassical perturbation theory is developed and applied to the elastic scattering of an atom from a corrugated surface. Analytical expressions for the diffraction pattern in the momentum space are obtained based on a sine corrugation function and a Morse potential for the interaction of the particle with the surface. The theory is implemented for a model of the in-plane scattering of Ar atoms from a LiF(100) surface. The resulting diffraction intensities are compared with second-order perturbation theory classical distributions and close-coupling results for two incident energies of 300 and 700 meV. The previous first-order perturbation theory predicts a symmetric diffraction pattern about the elastic peak, while the second-order semiclassical perturbation theory accounts correctly for the asymmetry in the diffraction pattern. © 2014 American Chemical SocietyThis work has been supported by grants of the Israel Science
Foundation, the German-Israel Foundation for Basic Research,
the Minerva Foundation, the Einstein center at the Weizmann
Institute of Science, and the Ministerio de Economia y
Competitividad under Project No. FIS2011-29596−C02-C01.
We also acknowledge support from the COST Action MP1006.Peer Reviewe
20S proteasomes secreted by the malaria parasite promote its growth
Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins β-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth