2,903 research outputs found

    The resonance spectrum of the cusp map in the space of analytic functions

    Full text link
    We prove that the Frobenius--Perron operator UU of the cusp map F:[1,1][1,1]F:[-1,1]\to[-1,1], F(x)=12xF(x)=1-2\sqrt{|x|} (which is an approximation of the Poincar\'e section of the Lorenz attractor) has no analytic eigenfunctions corresponding to eigenvalues different from 0 and 1. We also prove that for any q(0,1)q\in(0,1) the spectrum of UU in the Hardy space in the disk \{z\in\C:|z-q|<1+q\} is the union of the segment [0,1][0,1] and some finite or countably infinite set of isolated eigenvalues of finite multiplicity.Comment: Submitted to JMP; The description of the spectrum in some Hardy spaces is adde

    Resonances of the cusp family

    Full text link
    We study a family of chaotic maps with limit cases the tent map and the cusp map (the cusp family). We discuss the spectral properties of the corresponding Frobenius--Perron operator in different function spaces including spaces of analytic functions. A numerical study of the eigenvalues and eigenfunctions is performed.Comment: 14 pages, 3 figures. Submitted to J.Phys.

    Non-trivial stably free modules over crossed products

    Full text link
    We consider the class of crossed products of noetherian domains with universal enveloping algebras of Lie algebras. For algebras from this class we give a sufficient condition for the existence of projective non-free modules. This class includes Weyl algebras and universal envelopings of Lie algebras, for which this question, known as noncommutative Serre's problem, was extensively studied before. It turns out that the method of lifting of non-trivial stably free modules from simple Ore extensions can be applied to crossed products after an appropriate choice of filtration. The motivating examples of crossed products are provided by the class of RIT algebras, originating in non-equilibrium physics.Comment: 13 page
    corecore