We consider the class of crossed products of noetherian domains with
universal enveloping algebras of Lie algebras. For algebras from this class we
give a sufficient condition for the existence of projective non-free modules.
This class includes Weyl algebras and universal envelopings of Lie algebras,
for which this question, known as noncommutative Serre's problem, was
extensively studied before. It turns out that the method of lifting of
non-trivial stably free modules from simple Ore extensions can be applied to
crossed products after an appropriate choice of filtration. The motivating
examples of crossed products are provided by the class of RIT algebras,
originating in non-equilibrium physics.Comment: 13 page