15 research outputs found

    Status and New Data of the Geochemical Determination of the pp-Neutrino Flux by LOREX

    Get PDF
    LOREX LORandite EXperiment addresses the determination of the solar pp neutrino flux during the last four million years by exploiting the reaction 205 Tl Ī½ e ā†’ 205 Pb e āˆ’ with an incomparably low-energy threshold of 50 keV for the capture of solar neutrinos. The ratio of 205 Pb/ 205 Tl atoms in the Tl-bearing mineral lorandite provides, if corrected for the cosmic-ray induced background, the product of the flux of solar neutrinos and their capture probability by 205 Tl, averaged over the age of lorandite. To get the mean solar neutrino flux itself, four problems have to be addressed: 1 the geological age of lorandite, 2 the amount of background cosmicray-induced 205 Pb atoms which strongly depends on the erosion rate of the lorandite-bearing rocks, 3 the capture probability of solar neutrinos by 205 Tl and 4 the extraction of lorandite and the appropriate technique to "count" the small number of 205 Pb atoms in relation to the number of 205 Tl atoms. This paper summarizes the status of items 1 age and 3 neutrino capture probability and presents in detail the progress achieved most recently concerning the items 2 background/erosion and 4 "counting" of 205 Pb atoms in lorandite

    Direct experimental check of the isotropy of electromagnetic space

    No full text

    INDOOR RADON MEASUREMENTS BY NUCLEAR TRACK DETECTORS: APPLICATIONS IN SECONDARY SCHOOLS UDC 53+504.055

    No full text
    Abstract. Indoor radon measurements by nuclear track detectors and application of the method in secondary schools in Serbia were performed in the spring 2004. Thirty detectors (type CR-39) were distributed to high school teachers in several cities in Serbia. After three months of the detectors exposure, they were sent back to the Low-Level Laboratory, Institute of Physics, Belgrade. After exposure, the CR-39 detectors were etched in a 6N NaOH at 70 0 C for 3 hours. The tracks were counted by the semiautomatic track-counting system. The preliminary results are presented in this paper. Key words: Radon, nuclear track detector

    Erosion rate study at the Allchar deposit (Macedonia) based on radioactive and stable cosmogenic nuclides (26Al, 36Cl, 3He, and 21Ne)

    Get PDF
    This paper focuses on constraining the erosion rate in the area of the Allchar Sb-As-Tl-Au deposit (Macedonia). It contains the largest known reserves of lorandite (TlAsS2), which is essential for the LORanditeEXperiment (LOREX), aimed at determining the long-term solar neutrino flux. Because the erosion history of the Allchar area is crucial for the success of LOREX, we applied terrestrial in situ cosmogenic nuclides including both radioactive (26Al and 36Cl) and stable (3He and 21Ne) nuclides in quartz, dolomite/calcite, sanidine, and diopside. The obtained results suggest that there is accordance in the values obtained by applying 26Al, 36Cl, and 21Ne for around 85% of the entire sample collection, with resulting erosion rates varying from several tens of m/Ma to āˆ¼165 m/Ma. The samples from four locations (L-8 CD, L1b/R, L1c/R, and L-4/ADR) give erosion rates between 300 and 400 m/Ma. Although these localities reveal remarkably higher values, which may be explained by burial events that occurred in part of Allchar, the erosion rate estimates mostly in the range between 50 and 100 m/Ma. This range further enables us to estimate the vertical erosion rate values for the two main ore bodies Crven Dol and Centralni Deo. We also estimate that the lower and upper limits of average paleo-depths for the ore body Centralni Deo from 4.3 Ma to the present are 250ā€“290 and 750ā€“790 m, respectively, whereas the upper limit of paleo-depth for the ore body Crven Dol over the same geological age is 860 m. The estimated paleo-depth values allow estimating the relative contributions of 205Pb derived from pp-neutrino and fast cosmic-ray muons, respectively, which is an important prerequisite for the LOREX experiment
    corecore