35 research outputs found

    GIS for the assessment of risk from geomorphological hazards

    No full text

    A Likert Scale-Based Model for Benchmarking Operational Capacity, Organizational Resilience, and Disaster Risk Reduction

    No full text
    Likert scales are a common methodological tool for data collection used in quantitative or mixed-method approaches in multiple domains. They are often employed in surveys or questionnaires, for benchmarking answers in the fields of disaster risk reduction, business continuity management, and organizational resilience. However, both scholars and practitioners may lack a simple scale of reference to assure consistency across disciplinary fields. This article introduces a simple-to-use rating tool that can be used for benchmarking responses in questionnaires, for example, for assessing disaster risk reduction, gaps in operational capacity, and organizational resilience. We aim, in particular, to support applications in contexts in which the target groups, due to cultural, social, or political reasons, may be unsuitable for in-depth analyses that use, for example, scales from 1 to 7 or from 1 to 10. This methodology is derived from the needs emerged in our recent fieldwork on interdisciplinary projects and from dialogue with the stakeholders involved. The output is a replicable scale from 0 to 3 presented in a table that includes category labels with qualitative attributes and descriptive equivalents to be used in the formulation of model answers. These include examples of levels of resilience, capacity, and gaps. They are connected to other tools that could be used for in-depth analysis. The advantage of our Likert scale-based response model is that it can be applied in a wide variety of disciplines, from social science to engineering

    Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency

    No full text
    Nuclear lamins are components of the nuclear lamina, a structural scaffolding for the cell nucleus. Defects in lamins A and C cause an array of human diseases, including muscular dystrophy, lipodystrophy, and progeria, but no diseases have been linked to the loss of lamins B1 or B2. To explore the functional relevance of lamin B2, we generated lamin B2-deficient mice and found that they have severe brain abnormalities resembling lissencephaly, with abnormal layering of neurons in the cerebral cortex and cerebellum. This neuronal layering abnormality is due to defective neuronal migration, a process that is dependent on the organized movement of the nucleus within the cell. These studies establish an essential function for lamin B2 in neuronal migration and brain development
    corecore