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Abstract

Rainfall-triggered landslides are an ‘everyday risk’ to Small Island States, such as Saint Lucia in the
Caribbean, and have the potential to destroy or damage buildings and disrupt lifelines such as roads and
pipelines. To better evaluate these landslide hazards, efforts have been made to develop decision-
support tools linking rainfall scenarios to stability for different types of road cut slope. Many thousands
of stochastic simulations can be performed using a combined hydrology and slope stability model
(CHASM) which requires inputs of slope cross-sectional geometry, soil and hydrological parameters
which allows representative rainfall-triggered landslide scenarios to be produced. To use CHASM for
this purpose the statistical variation of the relevant geotechnical properties such as friction angle needs
to be assessed. This paper presents the analysis of an updated database for Saint Lucian soils that has
been compiled using data supplied by the Government of Saint Lucia Ministry of Infrastructure, Port
Services and Transport. The Coefficient of Variation values of the key soil mechanics parameters are
reported and previously developed transformation models for estimating effective friction angle are
updated. The Weibull statistical distribution is shown to be the best fit to the friction angle data.
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Introduction

Landslides in the humid tropics are typically rainfall
triggered (e.g. Lumb 1975, Toll 2001). Considerable
research has focused on modelling rainfall triggered
landslides in the Eastern Caribbean (Anderson & Kemp
1991, Holcombe et al. 2016, Shepheard et al. 2018a). As a
developing country, Saint Lucia is more vulnerable to
the effects of natural disasters than other nations
(Alcantara-Ayala et al. 2002) with socio-economically
vulnerable communities and lifeline infrastructure (Fig.
1) particularly affected (Bull-Kamanga et al. 2003, Larsen
& Parks, 1997).

Methods to better assess geotechnical variability are
needed to enhance geotechnical design (e.g. Lumb 1966,
Lumb 1970). Geotechnical databases are needed to
enable measures of geotechnical variability of a soil
parameter to be determined, such as the coefficient of
variation (COV); or the best-fit probability density Recent efforts to develop a geotechnical database for
functions; or to develop transformation models allowing  Saint Lucia have been reported by Vardanega et al. (2018)
a more complex soil parameter to be estimated from  and Shepheard et al. (2018b, 2019). In Shepheard et al.
basic ones (e.g. Kulhawy & Mayne 1990, Phoon & (2019), the first g1 entries in the database were reported
Kulhawy 1999a, Phoon & Kulhawy 1999b, Phoon 2017). and analysed. In this paper the database is expanded

Fig. 1 Road cut slope, Saint Lucia primary road network,
after landslide debris cleared (photo: E A Holcombe)



using data collected during a 2018 research visit. This
database was then expanded and further analysed in the
thesis of Savva (2019).

Such geotechnical data are necessary for mechanistic
slope stability analyses such as those performed using
CHASM (e.g. Wilkinson et al. 2002), and more recently
by placing such models within a stochastic high-
performance computing framework (e.g. Almeida et al.
2017). Potential decision-support outputs include
synthetic rainfall thresholds for landslide triggering (cf.
Larsen & Simon’s, 1993, empirical-statistical thresholds
for Puerto Rico). These can be used to assess whether a
region will experience landslides for a given storm event
(this topic is discussed further in Holcombe et al. 2020).

Soil Classification Parameters

The use of basic soil classification parameters (e.g.
plasticity index) to develop transformation models is the
subject of many studies (e.g. Kulhawy & Mayne 1990). In
this paper the COV of the liquid limit (wy), plastic limit
(wp), plasticity index (Ip), the silt-clay fraction (SCF)
(which is defined in this work as the percentage passing
the o.075mm sieve) and field water content (w) are
studied along with the soil effective peak friction angle
(¢#'p or ¢'pear) and apparent cohesion (c’).

Soil friction angle

The effective friction angle has been studied for soils
from various Caribbean islands e.g. Dominica (Rao 1996,
Reading 1991, Rouse et al. 1986, Rouse 1990) and Trinidad
(Roopnarine et al. 2012). To ensure long-term stability of
slopes the critical state friction angle (Take & Bolton
2011) or the fully softened or residual friction angle (e.g.
Eid & Rabie 2017, Hayden et al. 2018) would be preferred.

However, in Saint Lucia only the ¢, is typically
available from hand-powered direct shear tests in the
government materials laboratory. Shepheard et al. (2019)
describe the details of the testing process in which the
stress increment is believed to have been constant for all
the tests in the database (37.2 kPa to n2.4 kPa). Field
samples are placed directly into the shear box without
sieving, but with inevitable disturbance and change in
moisture content due to sample extraction, transporting
and testing (Shepheard et al. 2019). Further verification
of the shear box testing procedure would be required if
individual test data were intended for site-specific
analysis and design rather than for stochastic modelling
and diagnosis of general slope behaviour thresholds (see
Almeida et al. 2017).

Soil friction angle is related to changes in the
Atterberg limits (e.g. Brooker & Ireland 1965, Sorensen &
Okkels 2013, Stark & Eid 1997, Stark & Hussain 2013,
Wesley 1977, Wesley 2003) and clay fraction (Skempton
1985).
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Building the Saint Lucia Soils Database

In 2016 a field trip was undertaken by the first two
authors to Saint Lucia where data was obtained from the
digitised records from the Saint Lucia Ministry of
Infrastructure, Port Services and Transport. This data
along with other information from past projects
undertaken by the second author was used to produce
the database with g1 data entries presented in detail in
Shepheard et al. (2019) and analysed in Shepheard
(2017), Vardanega et al. (2018), Shepheard et al. (2018b).

In 2018, a follow-up visit was undertaken by another
research team from the University of Bristol (again the
first two authors were involved). In this visit, further
data was collected by scanning past data reports. This
new data was processed, added to the database and the
statistical analysis methodology presented in Shepheard
et al. (2019) was re-run. Preliminary results of this new
analysis are presented in Savva (2019). In the analysis
that follows the number of data-points (n) on each chart
can vary, as for each entry in the expanded database not
all the parameters of interest were available.

Statistical Analysis

Computation of COV can be used to assess relative
variability of different soil parameters (Phoon &
Kulhawy 1999a, Phoon & Kulhawy 1999b). Phoon (2017)
gives the COV values for many transformation models
from the literature. Tab. 1 shows the relevant summary
statistics for the updated Saint Lucia database. A range
of soil types are present on the island of Saint Lucia (see
Shepheard et al. 2019). Fig. 2 shows the soils from the
expanded database plotted on the Casagrande chart: a
range of plasticity levels is shown with both silts and
clays present in the database. Fig. 3 shows the pairs of ¢/,
and ¢’ with a high degree of scatter shown (the COV for
¢'is about 2.7 times that of ¢/,: see Tab. 1).
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Fig. 2 Expanded Saint Lucia Database (n=114) plotted on
the Casagrande-style classification chart
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Table 1 Summary statistics for the updated Saint Lucia soils database (all soil types) (SD = standard deviation)

¢’ (kPa) g0 | wi(%) ) Ip (%) w (%) SCF (%)
n 153 152 115 115 120 132 119
max 350 55 162 88 96 117 96
average 25 24 59 31 27 32 40
min 0 1 26 16 3 8 3
SD 31 11 22 10 15 16 24
COV (%) 125 46 38 32 58 49 59
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Fig. 3 ¢, plotted against ¢’ (kPa) (expanded database)

Regression Analysis

Past transformation models have been developed for
early versions of the Saint Lucia database. Ip is often used
to estimate ¢, (e.g. Brooker & Ireland 1965, Sorensen &
Okkels 2013). The coefficient of determination (R?) and
the number of data-points used to generate the
regression (n) are quoted for each transformation model
presented. For the Saint Lucia soils (data from the 2016
field work) the following transformation model was
developed (Shepheard et al. 2018b):

¢'p =264—022(Ip) [R*=0a15 n=55p=o0.004] [1]

However, for the Saint Lucia soils Shepheard et al.
(2018b) also showed a superior correlation using w:

¢, =30.7-032(w) [R*=0.:36,n=52, p<o0.001] [2]

Vardanega et al. (2018) showed further improvement in
R? when ¢, was regressed against liquidity index (I1):
¢', =208—-10.2(I)) [R*=0.43,n=48, p<o0.001] [3]

Equations 1-3 are compared with
transformation models in the following section.

updated

Updated Regressions

Fig. 4 shows ¢}, plotted against w; for the expanded
database (the number of available data-points for the
new regressions is about double that from the previous
studies). An exponential model was found to be the best
fit to the ¢, versus w; data:

0 20 40 60 80 100 120 140 160 180
w, (%)

Fig. 4 ¢, plotted against w;, (%) (expanded database)

Fig. 5 shows ¢, plotted against w, for the expanded
database with an exponential relationship:

@', = 31.0e70015wr)  [R2 = 0.088, n=101, p < 0.01] [5]
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Fig. 5 ¢, plotted against wp (%) (expanded database)

Fig. 6 shows ¢, plotted against I, compared with Eq. 1
and the following exponential relationship developed for
the updated database (reasonable agreement between
Eq.1 and Eq.6 is shown):

¢'p = 29.6e70016Ur)  [R2 = 0.23, n=104, p < 0.001] [6]




Fig. 6 ¢, plotted against Ip (%) (expanded database)

Fig. 7 shows ¢/, plotted against w compared with Eq. 2
and with the following exponential relationship
developed for the updated database (reasonable
agreement between Eq.2 and Eq.7 is shown):

@'y =39.0e70020W)  [R2 = 039, n=114, p < 0.001] [7]
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Fig. 7 ¢, plotted against w (%) (expanded database)

Fig. 8 shows ¢}, plotted against SCF for the expanded
database with the following exponential relationship:

@'y = 26.6e70-0079(5CF)  [R? = 0.14, n=101, p < 0.001] [8]
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Fig. 8 ¢, plotted against SCF (%) (expanded database)
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Fig. 9 shows ¢, plotted against I; compared with Eq. 3
and the following linear relationship developed for the
updated database:

¢’y =214 -6.6(,) [R? = 0.21, n=94, p < 0.001] [9]
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Fig. 9 ¢}, plotted against I}, (expanded database)

The slope of Eq. 9 is smaller than Eq. 3 and the R is
considerably lower. Of the studied correlations Eq. 7 has
the highest R? and is higher than for the correlation with
I, (Eq. 9). Fig. 10 shows the predicted measured plot for
Eq. 7 with +50% bounds shown.
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Fig. 10 Predicted versus measured plot for Eq. 7

Multiple Linear Regression (MLR) analysis

MLR studies of the early database were reported in
Shepheard (2017) and Shepheard et al. (2018b). The
following correlation was found:

¢'p = 19.8 — 0.14(w,) + 0.77(wp) — 0.46(w) [10]
[R? = 0.56, n=47, p < 0.001]

The same analysis was re-run for the expanded database:

¢', = 23.6 — 0.078(w,) + 0.42(wp) — 0.31(w) [11]
[R? = 0.28, n=84, p < 0.001]
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Statistical Models

Distributions of soil parameters are needed for
stochastic slope stability analysis. Fits of statistical
distributions to the early database were presented in
Shepheard et al. (2019) in which it was found that the
Weibull distribution was the best fit. With the @, data
in the extended database (n=152), the Weibull
distribution is again shown to be the most appropriate
(Fig. 1, Table 2). Table 2 provides a summary of the
Akaike Information Criteria (AIC) (Akaike 1974) and
Anderson Darling (AD) (Anderson & Darling 1954) test
statistics confirming the suitability of Weibull
distribution over the others. For the AIC also the
Generalised Extreme Value (GEV) fit was tested giving a
value of 1278 (still higher than the 1153 obtained using the
Weibull fit being the best option).
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Fig. u Normal (a), Lognormal (b), Weibull (c) and

Exponential (d) probability density functions fitted to ¢,
data from the extended database (fitting parameters for
each distribution shown on the figure)

Table 2 AIC and AD statistics for the distributions fitted
to the Saint Lucia ¢, data from the extended database

Normal = Lognormal ‘ Weibull ‘ Exponential

AlC 1160 1190 1153 1270
AD 1.0154 2.4775 0.4210 19.9490

Summary and Conclusions

This paper has presented preliminary analysis of an
expanded geotechnical database for Saint Lucia. The
new database has approximately doubled the number of
data-points available to develop transformation models
to predict ¢),. Future work will analyse classes of soils
within the database. Interestingly, the relative strength
of the previous correlations with Ipand w has remained
consistent with slightly higher computed R? values for
the correlations developed using the expanded dataset.
However, the models developed using I and a
combination of w;, wp and w have reduced R? values
compared with those for the earlier version of the
database. The best predictor of ¢, appears to be w, and
Weibull the best statistical distribution.
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