46 research outputs found

    Isospin dependence of electromagnetic transition strengths among an isobaric triplet

    Get PDF
    Electric quadrupole matrix elements, M, for the J=2→0, ΔT=0, T=1 transitions across the A=46 isobaric multiplet Cr-V-Ti have been measured at GSI with the FRS-LYCCA-AGATA setup. This allows direct insight into the isospin purity of the states of interest by testing the linearity of M with respect to T. Pairs of nuclei in the T=1 triplet were studied using identical reaction mechanisms in order to control systematic errors. The M values were obtained with two different methodologies: (i) a relativistic Coulomb excitation experiment was performed for Cr and Ti; (ii) a “stretched target” technique was adopted here, for the first time, for lifetime measurements in V and Ti. A constant value of M across the triplet has been observed. Shell-model calculations performed within the fp shell fail to reproduce this unexpected trend, pointing towards the need of a wider valence space. This result is confirmed by the good agreement with experimental data achieved with an interaction which allows excitations from the underlying sd shell. A test of the linearity rule for all published data on complete T=1 isospin triplets is presented.Peer Reviewe

    Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin Score

    Get PDF
    Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration

    Accounting for spatial dependency in multivariate spectroscopic data

    No full text
    We examine a hybrid multivariate regression technique to account for the spatial dependency in spectroscopic data due to adjacent measurement locations in the same joint by combining dimension reduction methods and linear mixed effects (LME) modeling. Spatial correlation is a common limitation (assumption of independence) encountered in diagnostic applications involving adjacent measurement locations, such as mapping of tissue properties, and can impede tissue evaluations. Near-infrared spectra were collected from equine joints (n = 5) and corresponding biomechanical (n = 202), compositional (n = 530), and structural (n = 530) properties of cartilage tissue were measured. Subsequently, hybrid regression models for estimating tissue properties from the spectral data were developed in combination with principal component analysis (PCA-LME) scores and least absolute shrinkage and selection operator (LASSO-LME). Performance comparison of PCA-LME and principal component regression, and LASSO-LME and LASSO regression was conducted to evaluate the effects of spatial dependency. A systematic improvement in calibration models’ correlation coefficients and a decrease in cross validation errors were observed when accounting for spatial dependency. Our results indicate that accounting for spatial dependency using a LME-based approach leads to more accurate prediction models

    Corrigendum to "Multimodality scoring of chondral injuries in the equine fetlock joint ex vivo" [Osteoarthritis Cartilage 25 (5) (2017 May) 790-798]

    No full text
    The authors have found a systematic error in the Young's modulus values in the manuscript “Multimodality scoring of chondral injuries in the equine fetlock joint ex vivo” published in the May 2017 issue of Osteoarthritis and Cartilage; 25(5):790–98. The formula used to calculate the instantaneous modulus values [Formula presented], and not for Young's modulus [Formula presented] as intended. As a result of this error, the Artscan modulus values [Formula presented] presented in Table 1 are exactly one third of the correct values. This also scales the y-axes of the figures 3C and 3D. This systematic error has no effect on the conclusions, discussion, or any other results/statistics presented in the article. The correct form of the equation with the corrected descriptions is as follows: “Young's modulus was determined based on the Hayes' elastic model of indentation: [Formula presented] where [Formula presented] is the measured indenter force, [Formula presented] is the Poisson's ratio [Formula presented], is the indenter radius of curvature, [Formula presented] is the radius of the indenter, and [Formula presented] and [Formula presented] are theoretical correction factors.” Table I (Corrected). Average ICRS scores (N = 43) and instantaneous moduli [Formula presented] for both surgeons, including SD and 95% CI of each round. Corresponding gold standard values for average histology-based ICRS score and laboratory mechanical testing system based instantaneous modulus [Formula presented] is observed between ICRS grades 0 and 1 based on the average score of multimodal scorings. (C-D) A similar trend is not apparent with Artscan measurements [Formula presented] and ICRS scores (histology) or the average score of multimodal scorings. A single measurement point is not visible (83.1 MPa, at ICRS 1 and ICRS 0) in subfigures C and D, respectively

    Multimodality scoring of chondral injuries in the equine fetlock joint ex vivo

    No full text
    Objective: We investigate the potential of a prototype multimodality arthroscope, combining ultrasound, optical coherence tomography (OCT) and arthroscopic indentation device, for assessing cartilage lesions, and compare the reliability of this approach with conventional arthroscopic scoring ex vivo. Design: Areas of interest (AIs, N = 43) were selected from equine fetlock joints (N = 5). Blind-coded AIs were independently scored by two equine surgeons employing International Cartilage Repair Society (ICRS) scoring system via conventional arthroscope and multimodality arthroscope, in which high-frequency ultrasound and OCT catheters were attached to an arthroscopic indentation device. In addition, cartilage stiffness was measured with the indentation device, and lesions in OCT images scored using custom-made automated software. Measurements and scorings were performed twice in two separate rounds. Finally, the scores were compared to histological ICRS scores. Results: OCT and arthroscopic examinations showed the highest average agreements (55.2%) between the scoring by surgeons and histology scores, whereas ultrasound had the lowest (50.6%). Average intraobserver agreements of surgeons and interobserver agreements between rounds were, respectively, for conventional arthroscope (68.6%, 69.8%), ultrasound (68.6%, 68.6%), OCT (65.1%, 61.7%) and automated software (65.1%, 59.3%). Conclusions: OCT imaging supplemented with the automated software provided the most reliable lesion scoring. However, limited penetration depth of light limits the clinical potential of OCT in assessing human cartilage thickness; thus, the combination of OCT and ultrasound could be optimal for reliable diagnostics. Present findings suggest imaging and quantitatively analyzing the entire articular surface to eliminate surgeon-related variation in the selection of the most severe lesion to be scored
    corecore