23 research outputs found

    <i>In silico</i> mapping of coronary artery disease genes

    Get PDF
    To date, more than 100 loci associated with coronary artery disease (CAD) have been detected in large-scale genome-wide studies. For some of the several hundreds of genes located in these loci, roles in the pathogenesis of the disease have been shown. However, the genetic mechanisms and specific genes controlling this disease are still not fully understood. This study is aimed at in silico search for new CAD genes. We performed a gene-based association analysis, where all polymorphic variants within a gene are analyzed simultaneously. The analysis was based on the results of the genome-wide association studies (GWAS) available from the open databases MICAD (120,575 people, 85,112 markers) and UK Biobank (337,199 people, 10,894,597 markers). We used the sumFREGAT package implementing a wide range of new methods for gene-based association analysis using summary statistics. We found 88 genes demonstrating significant gene-based associations. Forty-four of the identified genes were already known as CAD genes. Furthermore, we identified 28 additional genes in the known CAD loci. They can be considered as new candidate genes. Finally, we identified sixteen new genes (AGPAT4, ARHGEF12, BDP1, DHX58, EHBP1, FBF1, HSPB9, NPBWR2, PDLIM5, PLCB3, PLEKHM2, POU2F3, PRKD2, TMEM136, TTC29 and UTP20) outside the known loci. Information about the functional role of these genes allows us to consider many of them as candidates for CAD. The 41 identified genes did not have significant GWAS signals and they were identified only due to simultaneous consideration of all variants within the gene in the framework of gene-based analysis. These results demonstrate that gene-based association analysis is a powerful tool for gene mapping. The method can utilize huge amounts of GWAS results accumulated in the world to map different traits and diseases. This type of studies is widely available, as it does not require additional material costs

    State of rat colon microbiocenosis in chronic restraint stress treated with Selank

    Get PDF
    It is currently accepted that stress significantly affects composition of microbiocenosis due to changes in permeability of intestinal barrier and pro-inflammatory effects. This, in turn, changes behavioral reactions, anxiety and stress response. In this regard, it seems promising to use regulatory peptide-based neurotropic drugs including Selank to correct stress-induced dysbiosis. Our study was aimed at assessing state of rat colon microbiocenosis in modelled chronic restraint stress and treated with Selankby using 65 Wistar male rats divided into five groups (per 13 rats in each): group 1 — rats injected with saline; group 2 — injected with saline and induced chronic restraint stress; group 3–5 — administered with Selank at dose of 80 μg/kg, 250 μg/kg and 750 μg/kg body weight, respectively, and induced chronic restraint stress. Quantitative and qualitative study of animal colon microbiota was carried out according to the method by L.I. Kafarskaja and V.M. Korshunov. Identification of microorganisms was carried out by using a Maldi Biotyper Microflex mass spectrometer (Bruker, United States). Microbial species-specific composition was presented as lg CFU/g mass of examined sample. For each identified microbial genus, the relative mean and frequency of occurrence were calculated. Statistical significance of differences in mean values was determined by using Student’s t-test. Chronic restraint stress in the experiment did not result in affecting dominant microbiota species in rat colon nor reduce their frequency, however, it significantly influenced examined parameters for commensal microbiota disturbing pattern of pathogenic bacterial strains. Use of Selank led to the reversing changes in composition of colonic microbiocenosis caused by stress model. Moreover, magnitude of parameters examined in experiment after applying Selank at dose of 750 μg/kg reached those in non-stressed animals. Thus, effects related to Selank administration may presumably be mediated due to both central and peripheral effects including immunotropic and anti-inflammatory activities which contributed to restoring colon microbiocenosis composition in stress model

    Weighted functional linear regression models for gene-based association analysis

    Get PDF
    <div><p>Functional linear regression models are effectively used in gene-based association analysis of complex traits. These models combine information about individual genetic variants, taking into account their positions and reducing the influence of noise and/or observation errors. To increase the power of methods, where several differently informative components are combined, weights are introduced to give the advantage to more informative components. Allele-specific weights have been introduced to collapsing and kernel-based approaches to gene-based association analysis. Here we have for the first time introduced weights to functional linear regression models adapted for both independent and family samples. Using data simulated on the basis of GAW17 genotypes and weights defined by allele frequencies via the beta distribution, we demonstrated that type I errors correspond to declared values and that increasing the weights of causal variants allows the power of functional linear models to be increased. We applied the new method to real data on blood pressure from the ORCADES sample. Five of the six known genes with <i>P</i> < 0.1 in at least one analysis had lower <i>P</i> values with weighted models. Moreover, we found an association between diastolic blood pressure and the <i>VMP1</i> gene (<i>P</i> = 8.18×10<sup>−6</sup>), when we used a weighted functional model. For this gene, the unweighted functional and weighted kernel-based models had <i>P</i> = 0.004 and 0.006, respectively. The new method has been implemented in the program package FREGAT, which is freely available at <a href="https://cran.r-project.org/web/packages/FREGAT/index.html" target="_blank">https://cran.r-project.org/web/packages/FREGAT/index.html</a>.</p></div

    Regional heritability mapping method helps explain missing heritability of blood lipid traits in isolated populations

    Get PDF
    Single single-nucleotide polymorphism (SNP) genome-wide association studies (SSGWAS) may fail to identify loci with modest effects on a trait. The recently developed regional heritability mapping (RHM) method can potentially identify such loci. In this study, RHM was compared with the SSGWAS for blood lipid traits (high-density lipoprotein (HDL), low-density lipoprotein (LDL), plasma concentrations of total cholesterol (TC) and triglycerides (TG)). Data comprised 2246 adults from isolated populations genotyped using ∼300 000 SNP arrays. The results were compared with large meta-analyses of these traits for validation. Using RHM, two significant regions affecting HDL on chromosomes 15 and 16 and one affecting LDL on chromosome 19 were identified. These regions covered the most significant SNPs associated with HDL and LDL from the meta-analysis. The chromosome 19 region was identified in our data despite the fact that the most significant SNP in the meta-analysis (or any SNP tagging it) was not genotyped in our SNP array. The SSGWAS identified one SNP associated with HDL on chromosome 16 (the top meta-analysis SNP) and one on chromosome 10 (not reported by RHM or in the meta-analysis and hence possibly a false positive association). The results further confirm that RHM can have better power than SSGWAS in detecting causal regions including regions containing crucial ungenotyped variants. This study suggests that RHM can be a useful tool to explain some of the ‘missing heritability' of complex trait variation

    sumSTAAR: A flexible framework for gene-based association studies using GWAS summary statistics.

    No full text
    Gene-based association analysis is an effective gene-mapping tool. Many gene-based methods have been proposed recently. However, their power depends on the underlying genetic architecture, which is rarely known in complex traits, and so it is likely that a combination of such methods could serve as a universal approach. Several frameworks combining different gene-based methods have been developed. However, they all imply a fixed set of methods, weights and functional annotations. Moreover, most of them use individual phenotypes and genotypes as input data. Here, we introduce sumSTAAR, a framework for gene-based association analysis using summary statistics obtained from genome-wide association studies (GWAS). It is an extended and modified version of STAAR framework proposed by Li and colleagues in 2020. The sumSTAAR framework offers a wider range of gene-based methods to combine. It allows the user to arbitrarily define a set of these methods, weighting functions and probabilities of genetic variants being causal. The methods used in the framework were adapted to analyse genes with large number of SNPs to decrease the running time. The framework includes the polygene pruning procedure to guard against the influence of the strong GWAS signals outside the gene. We also present new improved matrices of correlations between the genotypes of variants within genes. These matrices estimated on a sample of 265,000 individuals are a state-of-the-art replacement of widely used matrices based on the 1000 Genomes Project data

    A Novel Framework for Analysis of the Shared Genetic Background of Correlated Traits

    No full text
    We propose a novel effective framework for the analysis of the shared genetic background for a set of genetically correlated traits using SNP-level GWAS summary statistics. This framework called SHAHER is based on the construction of a linear combination of traits by maximizing the proportion of its genetic variance explained by the shared genetic factors. SHAHER requires only full GWAS summary statistics and matrices of genetic and phenotypic correlations between traits as inputs. Our framework allows both shared and unshared genetic factors to be effectively analyzed. We tested our framework using simulation studies, compared it with previous developments, and assessed its performance using three real datasets: anthropometric traits, psychiatric conditions and lipid concentrations. SHAHER is versatile and applicable to summary statistics from GWASs with arbitrary sample sizes and sample overlaps, allows for the incorporation of different GWAS models (Cox, linear and logistic), and is computationally fast
    corecore