5 research outputs found

    Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    Get PDF
    Volatile organic compound (VOC) mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa) during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS), a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA), a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS) and a Fiber Laser-Induced Fluorescence Instrument (FILIF). The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO) and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK) and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR) is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC) using PTR-(TOF)-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20–25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study, and likely points to an offset in calibration, rather than a difference in the ability to measure the sum of terpenes. The contribution of isoprene relative to MBO inferred from PTR-MS and PTR-TOF-MS was smaller than 12% while GC-MS data suggested an average of 21% of isoprene relative to MBO. This comparison demonstrates that the current capability of VOC measurements to account for OH reactivity associated with the measured VOCs is within 20%

    Comparison of different real time VOC measurement techniques in a ponderosa pine forest

    Get PDF
    Volatile organic compound (VOC) mixing ratios measured by five independent instruments are compared at a forested site dominated by ponderosa pine (Pinus Ponderosa) during the BEACHON-ROCS field study in summer 2010. The instruments included a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS), a Proton Transfer Reaction Quadrupole Mass Spectrometer (PTR-MS), a Fast Online Gas-Chromatograph coupled to a Mass Spectrometer (GC/MS; TOGA), a Thermal Dissociation Chemical Ionization Mass Spectrometer (PAN-CIMS) and a Fiber Laser-Induced Fluorescence Instrument (FILIF). The species discussed in this comparison include the most important biogenic VOCs and a selected suite of oxygenated VOCs that are thought to dominate the VOC reactivity at this particular site as well as typical anthropogenic VOCs that showed low mixing ratios at this site. Good agreement was observed for methanol, the sum of the oxygenated hemiterpene 2-methyl-3-buten-2-ol (MBO) and the hemiterpene isoprene, acetaldehyde, the sum of acetone and propanal, benzene and the sum of methyl ethyl ketone (MEK) and butanal. Measurements of the above VOCs conducted by different instruments agree within 20%. The ability to differentiate the presence of toluene and cymene by PTR-TOF-MS is tested based on a comparison with GC-MS measurements, suggesting a study-average relative contribution of 74% for toluene and 26% for cymene. Similarly, 2-hydroxy-2-methylpropanal (HMPR) is found to interfere with the sum of methyl vinyl ketone and methacrolein (MVK + MAC) using PTR-(TOF)-MS at this site. A study-average relative contribution of 85% for MVK + MAC and 15% for HMPR was determined. The sum of monoterpenes measured by PTR-MS and PTR-TOF-MS was generally 20–25% higher than the sum of speciated monoterpenes measured by TOGA, which included α-pinene, β-pinene, camphene, carene, myrcene, limonene, cineole as well as other terpenes. However, this difference is consistent throughout the study, and likely points to an offset in calibration, rather than a difference in the ability to measure the sum of terpenes. The contribution of isoprene relative to MBO inferred from PTR-MS and PTR-TOF-MS was smaller than 12% while GC-MS data suggested an average of 21% of isoprene relative to MBO. This comparison demonstrates that the current capability of VOC measurements to account for OH reactivity associated with the measured VOCs is within 20%

    Selective measurements of isoprene and 2-methyl-3-buten-2-ol based on NO+ ionization mass spectrometry

    Get PDF
    Biogenic VOC emissions are often dominated by 2-methyl-1,3-butadiene (isoprene) and 2-methyl-3-buten-2-ol (232 MBO). Here we explore the possibility to selectively distinguish these species using NO+ as a primary ion in a conventional PTR-MS equipped with an SRI unit. High purity of NO+ (>90 %) as a primary ion was utilized in laboratory and field experiments using a conventional PTR-TOF-MS. Isoprene is ionized via charge transfer leading to the major product ion C5H+8 (>99 %) (e.g. Spanel and Smith, 1998). 232 MBO undergoes a hydroxide ion transfer reaction resulting in the major product ion channel C5H+9 (>95 %) (e.g. Amelynck et al., 2005). We show that both compounds are ionized with little fragmentation (<5 %) under standard operating conditions. Typical sensitivities of 11.1±0.1 (isoprene) and 12.9±0.1 (232 MBO) ncps ppbv−1 were achieved, which correspond to limit of detections of 18 and 15 pptv respectively for a 10 s integration time. Sensitivities decreased at higher collisional energies. Calibration experiments showed little humidity dependence. We tested the setup at a field site in Colorado dominated by ponderosa pine, a 232MBO emitting plant species. Our measurements confirm 232MBO as the dominant biogenic VOC at this site, exhibiting typical average daytime concentrations between 0.2–1.4 ppbv. The method is able to detect the presence of trace levels of isoprene at this field site (90–250 ppt) without any interference from 232 MBO, which would not be feasible using H3O+ ionization chemistry, and which currently also remains a challenge for other analytical techniques (e.g. gas chromatographic methods

    Field observations of volatile organic compound (VOC) exchange in red oaks

    Get PDF
    Volatile organic compounds (VOCs) emitted by forests strongly affect the chemical composition of the atmosphere. While the emission of isoprenoids has been largely characterized, forests also exchange many oxygenated VOCs (oVOCs), including methanol, acetone, methyl ethyl ketone (MEK), and acetaldehyde, which are less well understood. We monitored total branch-level exchange of VOCs of a strong isoprene emitter (Quercus rubra L.) in a mixed forest in New England, where canopy-level fluxes of VOCs had been previously measured. We report daily exchange of several oVOCs and investigated unknown sources and sinks, finding several novel insights. In particular, we found that emission of MEK is linked to uptake of methyl vinyl ketone (MVK), a product of isoprene oxidation. The link was confirmed by corollary experiments proving in vivo detoxification of MVK, which is harmful to plants. Comparison of MEK, MVK, and isoprene fluxes provided an indirect indication of within-plant isoprene oxidation. Furthermore, besides confirming bidirectional exchange of acetaldehyde, we also report for the first time direct evidence of benzaldehyde bidirectional exchange in forest plants. Net emission or deposition of benzaldehyde was found in different periods of measurements, indicating an unknown foliar sink that may influence atmospheric concentrations. Other VOCs, including methanol, acetone, and monoterpenes, showed clear daily emission trends but no deposition. Measured VOC emission and deposition rates were generally consistent with their ecosystem-scale flux measurements at a nearby sit
    corecore