47 research outputs found

    Thermal and Structural Analysis of the Blow Moulded Air Duct

    Get PDF
    In this study, one of the plastic automotive parts, Air Duct, manufactured through blow moulding process is reviewed and investigated with a practical process point of view using structural mechanics approach. First, current blow moulding process was examined to find governing factors of the process which can be improved or adjusted for better quality control of finished product. Secondly, numerical analysis was conducted on the post-mould process in order to predict the deformation in the final products with properly assumed initial and boundary conditions. The simulation results showed that the degree of warpage under current blow moulding process could be predicted at a reasonable accuracy. It was also discovered that the distortions of the holes are strongly dependent on it location and surrounding, and the current cooling method should be improved to improve the quality. Based on the simulation results and literature survey, a better post-mould cooling method was suggested. In addition, the problem in cooling system was identified, and redesigning scheme was recommended

    Normal modes of coupled vortex gyration in two spatially separated magnetic nanodisks

    Get PDF
    We found from analytical derivations and micromagnetic numerical simulations that there exist two distinct normal modes in apparently complex vortex gyrotropic motions in two dipolar-coupled magnetic nanodisks. The normal modes have characteristic higher and lower single angular eigenfrequencies with their own elliptical orbits elongated along the x (bonding axis) and y axes, respectively. The superposition of the two normal modes results in coupled vortex gyrations, which depend on the relative vortex-state configuration in a pair of dipolar-coupled disks. This normal-mode representation is a simple means of understanding the observed complex vortex gyrations in two or more dipolar-interacting disks of various vortex-state configurations.Comment: 18 pages, 3 figures, 1 tabl

    Out-of-plane current controlled switching of the fourfold degenerate state of a magnetic vortex in soft magnetic nanodots

    Get PDF
    We report on an observation of transitions of the fourfold degenerate state of a magnetic vortex in soft magnetic nanodots by micromagnetic numerical calculations. The quaternary vortex states in patterned magnetic dots were found to be controllable by changing the density of out-of-plane dc or pulse currents applied to the dots. Each vortex state can be switched to any of the other states by applying different sequence combinations of individual single-step pulse currents. Each step pulse has a characteristic threshold current density and direction. This work offers a promising way for manipulating both the polarization and chirality of magnetic vortices.open161

    Information-signal-transfer rate and energy loss in coupled vortex-state networks

    Get PDF
    We employed analytical and micromagnetic numerical calculations to elucidate coupled-vortexg-yration-enabled information-signal transfer and the related energy attenuation between vortex-state nanodisks. Specifically, we explored the vortex-gyration transfer rate and the energy attenuation coefficient in terms of the material parameters and dimensions of the coupled disks. Both the micromagnetic simulation and analytical results indicated that the transfer rate is determined by the relative polarization configuration, the saturation magnetization M-s, the radius (R)-to-thickness (L) ratio (R/L) of the given magnetic disks, and the interdistance, whereas the energy attenuation is governed by the intrinsic damping constant as well as the values of M-s, L, and R of the single disks. This work provides a foundation for manipulation of the technologically essential parameters in signal processing, namely speed and energy loss, based on coupled vortex-state networks.close5

    Memory-bit selection and recording by rotating fields in vortex-core cross-point architecture

    Get PDF
    In one of our earlier studies S.-K. Kim et al., [Appl. Phys. Lett. 92, 022509 (2008)], we proposed a concept of robust information storage, recording, and readout, which can be implemented in nonvolatile magnetic random-access memories and is based on the energetically degenerated twofold ground states of vortex-core magnetizations. In the present study, we experimentally demonstrate reliable memory-bit selection and recording in vortex-core cross-point architecture, specifically using a two-by-two vortex-state disk array. In order to efficiently switch a vortex core positioned at the intersection of crossed electrodes, two orthogonal addressing electrodes are selected, and then two Gaussian pulse currents of optimal pulse width and time delay are applied. Such tailored pulse-type rotating magnetic fields which occur only at the selected intersection are a prerequisite for a reliable memory-bit selection and low-power-consumption recording of information in the existing cross-point architecture. (C) 2011 American Institute of Physics.close211

    Observation of coupled vortex gyrations by 70-ps-time- and 20-nm-space-resolved full-field magnetic transmission soft x-ray microscopy

    Get PDF
    We employed time- and space-resolved full-field magnetic transmission soft x-ray microscopy to observe vortex-core gyrations in a pair of dipolar-coupled vortex-state Permalloy (Ni80 Fe20) disks. The 70 ps temporal and 20 nm spatial resolution of the microscope enabled us to simultaneously measure vortex gyrations in both disks and to resolve the phases and amplitudes of both vortex-core positions. We observed their correlation for a specific vortex-state configuration. This work provides a robust and direct method of studying vortex gyrations in dipolar-coupled vortex oscillators.open282

    Universal criterion and phase diagram for switching a magnetic vortex core in soft magnetic nanodots

    Get PDF
    The universal criterion for ultrafast vortex-core switching between the up- and down-core bistates in soft magnetic nanodots was investigated by micromagnetic simulations along with analytical calculations. Vortex-core switching occurs whenever the velocity of vortex-core motion reaches the critical velocity that is expressed as (e.g. m/s for Permalloy), where Aex is the exchange stiffness, and is the gyromagnetic ratio. On the basis of the above results, phase diagrams for the vortex-core switching event and switching times with respect to both the amplitude and frequency of applied circularly rotating magnetic field were calculated, which offer practical guidance for implementing nanodots in vortex states into future solid-state information-storage devices.Comment: 25 pages, 5 figures. To whom all correspondence should be addressed: [email protected]

    Polarization-selective vortex-core switching by orthogonal Gaussian-pulse currents

    Get PDF
    We experimentally demonstrate low-power-consumption vortex-core switching in magnetic nanodisks using tailored rotating magnetic fields that are produced with orthogonal and unipolar Gaussian-pulse currents. Optimal width of the orthogonal pulses and their time delay are found to be determined only by the angular eigenfrequency {\omega}_D for a given vortex-state disk of its polarization p, such that {\sigma} = 1/{\omega}_D and {\Delta}t = {\pi}p/2{\omega}_D, as studied from analytical and micromagnetic numerical calculations. The estimated optimal pulse parameters are in good agreements with the experimentally found results. This work provides a foundation for energy-efficient information recording in vortex-core cross-point architecture.Comment: 32 pages, 10 figure

    The Distinct Metabolic Phenotype of Lung Squamous Cell Carcinoma Defines Selective Vulnerability to Glycolytic Inhibition

    Get PDF
    Adenocarcinoma (ADC) and squamous cell carcinoma (SqCC) are the two predominant subtypes of non-small cell lung cancer (NSCLC) and are distinct in their histological, molecular and clinical presentation. However, metabolic signatures specific to individual NSCLC subtypes remain unknown. Here, we perform an integrative analysis of human NSCLC tumour samples, patient-derived xenografts, murine model of NSCLC, NSCLC cell lines and The Cancer Genome Atlas (TCGA) and reveal a markedly elevated expression of the GLUT1 glucose transporter in lung SqCC, which augments glucose uptake and glycolytic flux. We show that a critical reliance on glycolysis renders lung SqCC vulnerable to glycolytic inhibition, while lung ADC exhibits significant glucose independence. Clinically, elevated GLUT1-mediated glycolysis in lung SqCC strongly correlates with high 18F-FDG uptake and poor prognosis. This previously undescribed metabolic heterogeneity of NSCLC subtypes implicates significant potential for the development of diagnostic, prognostic and targeted therapeutic strategies for lung SqCC, a cancer for which existing therapeutic options are clinically insufficient
    corecore