
Information-signal-transfer rate and energy loss in coupled vortex-state networks
Ji-Hye Kim, Ki-Suk Lee, Hyunsung Jung, Dong-Soo Han, and Sang-Koog Kim 
 
Citation: Applied Physics Letters 101, 092403 (2012); doi: 10.1063/1.4748885 
View online: http://dx.doi.org/10.1063/1.4748885 
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/101/9?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Normal modes of coupled vortex gyration in two spatially separated magnetic nanodisks 
J. Appl. Phys. 110, 113903 (2011); 10.1063/1.3662923 
 
Direct observation of antiferromagnetically oriented spin vortex states in magnetic multilayer elements 
Appl. Phys. Lett. 98, 232511 (2011); 10.1063/1.3597297 
 
Soft spin modes and magnetic transitions in trilayered nanodisks in the vortex state 
J. Appl. Phys. 105, 07E304 (2009); 10.1063/1.3065672 
 
Energy surface model and dynamic switching under alternating field at microwave frequency 
Appl. Phys. Lett. 94, 102506 (2009); 10.1063/1.3097229 
 
Dynamics of magnetic vortex core switching in Fe nanodisks by applying in-plane magnetic field pulse 
J. Appl. Phys. 102, 103904 (2007); 10.1063/1.2811885 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  114.70.7.203

On: Thu, 08 Jan 2015 04:21:37

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/79701763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1177509525/x01/AIP-PT/Keysight_APLArticleDL_010715/en_keysight_728x90_3325-2Pico.png/47344656396c504a5a37344142416b75?x
http://scitation.aip.org/search?value1=Ji-Hye+Kim&option1=author
http://scitation.aip.org/search?value1=Ki-Suk+Lee&option1=author
http://scitation.aip.org/search?value1=Hyunsung+Jung&option1=author
http://scitation.aip.org/search?value1=Dong-Soo+Han&option1=author
http://scitation.aip.org/search?value1=Sang-Koog+Kim&option1=author
http://scitation.aip.org/content/aip/journal/apl?ver=pdfcov
http://dx.doi.org/10.1063/1.4748885
http://scitation.aip.org/content/aip/journal/apl/101/9?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/110/11/10.1063/1.3662923?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/98/23/10.1063/1.3597297?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/105/7/10.1063/1.3065672?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/94/10/10.1063/1.3097229?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/102/10/10.1063/1.2811885?ver=pdfcov


Information-signal-transfer rate and energy loss in coupled vortex-state
networks

Ji-Hye Kim, Ki-Suk Lee,a) Hyunsung Jung, Dong-Soo Han, and Sang-Koog Kimb)

National Creative Research Center for Spin Dynamics & Spin-Wave Devices, and Nanospinics Laboratory,
Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National
University, Seoul 151-744, South Korea

(Received 14 July 2012; accepted 16 August 2012; published online 28 August 2012)

We employed analytical and micromagnetic numerical calculations to elucidate coupled-vortex-

gyration-enabled information-signal transfer and the related energy attenuation between vortex-state

nanodisks. Specifically, we explored the vortex-gyration transfer rate and the energy attenuation

coefficient in terms of the material parameters and dimensions of the coupled disks. Both the

micromagnetic simulation and analytical results indicated that the transfer rate is determined by the

relative polarization configuration, the saturation magnetization Ms, the radius (R)-to-thickness (L)

ratio (R/L) of the given magnetic disks, and the interdistance, whereas the energy attenuation is

governed by the intrinsic damping constant as well as the values of Ms, L, and R of the single disks.

This work provides a foundation for manipulation of the technologically essential parameters in

signal processing, namely speed and energy loss, based on coupled vortex-state networks. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4748885]

In the modern electronic devices, information-signal

processing is based on the motion of electron charges. On

the other hand, several concepts1–11 entailing magnetization

orientations also have been proposed. For example, moving

domain walls,5 propagating spin waves in nanowires,6–9 and

one- and two-dimensional (1D and 2D) magnonic crys-

tals10,11 can be used as basic elements of information-signal

processing. The utilization of the magnetization orientations

of nanomagnets offers the benefit of endless switchable mag-

netization without any translational motion of massive

particles.

As an alternative mechanism of information-signal

transport, coupled vortex oscillations in vortex-state

networks have recently been proposed.12–16 The magnetic

vortex, which is characterized by in-plane curling magnetiza-

tions (chirality, C) and out-of-plane magnetizations (polar-

ization, p) in the central region, has a characteristic

translational mode (known as gyration): a vortex core orbits

around its equilibrium center position at a characteristic

eigenfrequency ranging from 10 MHz to 1 GHz according to

the dot dimensions.17 During the gyration, the vortex core

shifted from its center position leads to non-zero side-surface

charges, thus producing stray fields around the dot itself.

When another neighboring dot is placed sufficiently close to

the first dot, the stray field is strong enough to affect it as

well. The rotating stray field has the same frequency as the

eigenfrequency x0 of the gyration. As reported earlier, such

dynamic dipolar interaction causes mutual energy transfer

between two coupled vortex oscillators, as between two

coupled spring-mass oscillators or pendulums.13,15,18–21

Higher operating speed and lower energy dissipation

being the most essential factors in information-signal proc-

essing technologies, in the present study, we investigated

gyration transfer time sex and its related energy attenuation

coefficient b. We explored, by both micromagnetic simula-

tions and analytical derivations, explicit forms of sex and b
in terms of their materials parameters, the damping constant

a and the saturation magnetization Ms, and the dimensions of

a given coupled vortex-state network (radius R, thickness L,

and center-to-center interdistance dint).

We used a model of coupled harmonic vortex oscillators

composed of two Permalloy (Py) disks [see Fig. 1(a)]. For the

purpose of micromagnetic numerical calculations, we

employed the OOMMF code,22 which utilizes the Landau-

Lifshitz-Gilbert (LLG) equation of motion for individual

magnetizations M: @M=@t ¼ �cðM�HeffÞ þ a=MsðM
�@M=@tÞ with the gyromagnetic ratio c and the effective

field Heff. Typical material parameters for Py were applied:

Ms¼ 8.6� 105 A/m, exchange stiffness Aex¼ 1.3� 10�11J/m,

a¼ 0.01, c¼ 2.21� 105 m/As, and zero magnetocrystalline

anisotropy. The unit cell was 3� 3� L nm3 in size. The

upward and downward core orientations in both disks were

represented by the vortex polarization, p¼þ1 and p¼�1,

respectively, and the counter-clockwise (CCW) and clock-

wise (CW) in-plane curling magnetizations were indicated by

the chirality, C¼þ1 and �1, respectively. To excite vortex

gyration only in disk 1, the initial center position of its core

was displaced in the þy direction by application, only to this

disk, of a magnetic field in the þx direction. After turning off

the field, the vortex-core position vectors of both disks, under

free relaxation but coupled to each other, were monitored to

extract their motion trajectories.

In order to analytically derive the two parameters of sex

and b in terms of a, Ms, L, R, and dint, we used the coupled

linearized Thiele’s equations23

�G1 � _X1 � D̂ _X1 þ @WðX1;X2Þ=@X1 ¼ 0;

�G2 � _X2 � D̂ _X2 þ @WðX1;X2Þ=@X2 ¼ 0;
(1)
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where X1;2 ¼ ðx1;2; y1;2Þis the vortex-core position vector

from the center of each of the disks (noted by the subscripts

1 and 2), G1;2 ¼ �Gp1;2ẑ is the gyrovector with a constant

G ¼ 2pLMs=c> 0, and D̂ ¼ DÎ is the damping tensor with

the identity matrix Î along with the damping constant

D¼ �apLMs½2þ lnðR=RcÞ�=c with the core radius Rc (Ref.

24). WðX1;X2Þ is the potential energy of an entire coupled

system, and thus can be expressed as the sum of the potential

energy Wð0Þ at X1,2¼ (0,0) and the potential energy
1
2
jðX1

2 þ X2
2Þ for the shifted cores with the identical stiff-

ness coefficient j for isolated disks, and the last interaction

term Wint. Considering the side-surface charges of each disk

of a shifted core according to the rigid vortex model, Wint is

given as C1C2(gxx1x2� gyy1y2), as reported in Ref. 18, where

gx,y is the interaction strength coefficient along the x and y
axes for a given material and dimensions. From previous ex-

perimental,13,21,25 micromagnetic numerical,13 and theoreti-

cal18,20 studies, it is known that the dipolar interaction

strength between two vortices depends strongly on dint: Shi-

bata et al.18 reported the relation of gx;y / ðdint=RÞ�6
and

Sukhostavets et al.20 reported gx;y / ðdint=RÞ�3:2
for a range

of dint/R¼ 2 – 5.

Here, we will discuss the results of micromagnetic nu-

merical calculations on the dynamic behaviors of coupled

vortex oscillators under free relaxation for different dimen-

sions. Typical oscillatory displacements at a characteristic

periodicity with decreasing amplitude, as a function of time,

and the mutual exchange of their local maxima and minima

between the two disks, are clearly apparent, as shown in Fig.

1(b). From these data, we can extract sex and b. As we

defined in Ref. 13, the sex, indicated by the black arrow, is

the time period required for complete transport of the vortex

gyration in one oscillator to the other one. The value of sex is

thus given as one-half of the displacement modulation perio-

dicity, that is, as p=jDxj, where jDxj is the frequency split-

ting that occurs by dipolar interaction between the shifted

cores of the two disks.

On the other hand, the gradual decrease of the oscilla-

tory displacements, represented by the dotted lines, can be

expressed in the e�bt form using the attenuation coefficient

term b. The amplitude attenuation is related to the energy

loss during mutual gyration transfer between the two dots.

From the simulation results, as shown in Fig. 1(b), we can

extract the numerical values of sex and b for the given mate-

rial parameters of a and Ms and dimensions ranging from

R¼ 61.5 to 243 nm, L¼ 7.5 to 40 nm, and dint¼ 9 to 24 nm,

as shown in Figs. 2 and 3 (see the symbols). The relative

polarization configuration of p1p2 (¼þ1 for parallel core

orientations, �1 for antiparallel ones) is also variable.

Prior to addressing the underlying physics of the simula-

tion results for sex and b shown in Figs. 2 and 3, we analyti-

cally derived both parameters to gain physical insights into

the simulation results. Frist, sex is reported to be given by

p=jDxj (Ref. 13). Thus, it is necessary to obtain an explicit

form of jDxj. To do so, we adopted the representation of two

normal modes for coupled vortex oscillators, N¼ (x1þ x2,

y1þ p1p2y2) and X¼ (x1� x2, y1� p1p2y2) (Ref. 19), along

FIG. 1. (a) Geometrical configuration of two vortex-state disks of diameter

2R, thickness L, and center-to-center interdistance dint. The in-plane curling

magnetization orienation of the two vortex-state disks is indicated, by the

streamlines with the small arrows, as CCW for both disks. The upward and

downward spikes at the core regions correspond to the upward and down-

ward core magnetizations, respectively. (b) Displacements of vortex-core

motions in both disks as function of time during relaxation process for indi-

cated [2R, L] dimensions in case of dint/R¼ 2.1.

FIG. 2. (a) Vortex-gyration transfer rate sex as function of ratio of R/L for

different values of 2R with fixed value of dint/R¼ 2.1 in case of p1p2¼�1.

(b) sex versus Ms/Ms,Py for [2R, L]¼ [243 nm, 10 nm] and p1p2¼�1. (c)

Comparison of variation of sex with R/L for antiparallel (p1p2¼�1: purple)

and parallel (p1p2¼þ1: orange) polarization configurations in case of

2R¼ 243 nm. In (a)–(c), the solid lines and symbols correspond to the ana-

lytical calculation and micromagnetic simulation results, respectively.

092403-2 Kim et al. Appl. Phys. Lett. 101, 092403 (2012)
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with the corresponding eigenfrequencies ~xN

�x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þCxÞð1�CyÞ

p
� ib and ~xX�x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�CxÞð1þCyÞ

p
�ib, where x0¼j=G, Cx¼C1C2gx=j and

Cy¼C1C2p1p2gy=j, for cases of G�jDj and gx;y�j. On

the basis of the two normal coordinates, jDxj can be

expressed simply as jReð~xNÞ�Reð~xXÞjand, thus, sex

�pG=jgx�p1p2gyj. From the integration of gx,y, we have

explicit forms, gx;y¼ðl0=8pÞM2
s ðL2=RÞIx;y with l0 the vac-

uum permeability, along with Ix,y (which is a function of dint/R
and has a constant value for a given (dint/R) range), and Ix>Iy

(for details, see Ref. 26). The explicit form of sex is finally

obtained as

sex �
16p3

l0cMsjIx � p1p2Iyj
R

L

� �
: (2)

We can know from Eq. (2) that sex varies dominantly

with dint, given the relation of Ix / ðdint=RÞ�3:4
and

Iy / ðdint=RÞ�4:0
, and for the case of p1p2¼�1, sex thus

decreases significantly with decreasing dint. Also, sex is

inversely proportional to Ms and is linearly proportional to

R/L. For example, the analytical calculation of sex for the

given values of p1p2¼�1, Ms¼Ms,Py, and dint/R¼ 2.1 is

shown in Fig. 2(a). Figure 2(b) indicates that the value of sex

decreases with increasing Ms, and Fig. 2(c) plots the depend-

ence of sex versus R/L for the relative polarization configura-

tions (i.e., p1p2¼61). The analytical data were in good

agreement with the micromagnetic simulations. A relatively

large deviation of sex between the analytical and simulation

results at smaller Ms was related to deviations of both G and

1=jgx þ gyj, but in this case, it was a product mainly of the

deviation of 1=jgx þ gyj.
We stress here that the large difference in sex between

p1p2¼þ1 and �1 within a wide range of R/L promises

manipulation of signal propagation speed by variation of the

switchable polarization states for the given dimensions, con-

stituent material, and interdistance. The physical origin of

such a dependence can be thought to be directly related to

the frequency splitting caused by the modification of the

stiffness of isolated disks’ potential energy through their

dipolar interaction. The values of Ms, R/L, Ix,y (a function of

dint), and p1p2 influence the dipolar interaction and hence the

potential energy stiffness of isolated disks: the larger the Ms

and the smaller the dint, the greater stiffness of the potential

energy; and the larger the R/L, the less stiffness. Moreover,

p1p2¼�1 yields stronger dipolar interaction than p1p2¼þ1,

since the opposite rotational senses of the gyrations in both

disks, with their antiparallel polarities, result in stronger

dipolar interaction than does the same rotational sense. The

fact that sex varies with R/L, Ms, and p1p2 provides a robust

way to control and further reduce sex (thereby effecting a

faster processing speed) by varying those values.

The magnitude of coefficient b represents the degree of

energy attenuation during signal propagation. b is given ana-

lytically as b ¼ �jD=ðG2 þ D2Þ ¼ �ðD=GÞx0 by solving

Eq. (1) through its diagonalization with respect to the

normal-mode coordinates.19 For cases of L�R, using x0 �
10cMsðL=RÞ=3 for the rigid model,17,27 b is given simply as

b � 5
3
acMsL½2þ lnðR=RcÞ�=R. As for the side-surface-

charge free model, b can be expressed as b � 10
9

acMsL½2þ
lnðR=RcÞ�=R using x0 � 20cMsðL=RÞ=9 (Ref. 27). These an-

alytical forms allow us to understand the relation of energy

loss to the given material parameters and dimensions during

vortex-gyration transfer. In Fig. 3, we plotted the analytical

calculations (lines) of b (for both the rigid and surface-

charge-free models) compared with the micromagnetic simu-

lation results (symbols). The analytical calculation (dotted

lines) for the rigid vortex model is quite different from the

micromagnetic simulation (open symbols), whereas the ana-

lytical calculation (solid lines) for the surface-charge-free-

model is in better agreement with the simulation. The reason

for such large deviation for the rigid model is the large devi-

ation of x0 used for the analytical calculation from x0 for

the realistic simulation case. The most important point to be

addressed here is that b is a linear function of a, Ms, and L,

and rather a complex function of R. According to the results

shown in Fig. 3, a decrease in Ms and L and an increase in R
allow for reduction in b while effecting an increase of sex.

Since a is related to b but not to sex, while keeping sex faster,

b can be reduced by decreasing a and by optimizing the

dimensions of the coupled dots. For example, the energy

attenuation in transferring vortex gyrations from disk 1 to

disk 2 can be represented by the ratio of the first maxima of

the displacement of disk 2’s vortex core to that of disk 1,

jX2jt¼sex
=jX1jt¼0 ¼ e�b�sex (Ref. 28). For the given case of

FIG. 3. Plots of b=2p (a) versus a, (b) versus Ms/Ms,Py for [2R, L]¼ [303 nm,

10 nm], and (c) versus L. The open symbols correspond to the micromagnetic

simulation results, while the dotted and solid lines represent the analytical

calculation results for the rigid vortex model and side-surface-charge free

model, respectively. The inset shows b=2p versus R for a given L¼ 10 nm

value.
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Ms¼Ms,Py, and [2R, L]¼ [303 nm, 10 nm], we obtained

jX2jmax1=jX1jmax1 ¼ 0.7529 for a¼ 0.01, but 0.8448 for

a¼ 0.005, leading to a 12% further reduction in the ampli-

tude attenuation.

In conclusion, we demonstrated by both analytical deri-

vations and micromagnetic simulations that a shorter sex can

be achieved by choosing a smaller R/L along with antiparal-

lel polarizations and a larger Ms. Smaller b values can be

obtained with intrinsic low-damping material and/or by

using smaller Ms and thickness. Signal propagation speed

and reduction of energy loss can be optimized by engineer-

ing the material parameters and dimensions of constituent

disks and their compensation. This work provides a promis-

ing foundation for signal-processing speed enhancement

and energy-loss reduction in vortex-gyration-transfer-based

information-signal processing.
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Program through the National Research Foundation of Korea
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