1,723 research outputs found

    Structural breaks and long memory in US inflation rates: do they matter for forecasting?

    Get PDF
    There is substantial evidence that several economic time series variables experience occasional structural breaks. At the same time, for some of these variables there is evidence of long memory. In particular, it seems that inflation rates have both features. One cause for this finding may be that the two features are difficult to distinguish using currently available econometric tools. Indeed, various recent studies show that neglecting occasional breaks may lead to a spurious finding of long-memory properties. In this paper we focus on this issue within the context of out-of-sample forecasting. First, we show that indeed data with breaks can be viewed as long-memory data. Next, we compare time series models with structural breaks, models with long-memory and linear autoregressive models for 23 monthly US inflation rates in terms of out-of-sample forecasting for various horizons. A key finding is that the linear models do not perform as well as the other two, and that the model with breaks and the model with long memory perform about equally well. We also examine their joint performance by combining the forecasts. A by-product of our empirical analysis is that we can relate the value of the long-memory parameter with the number of detected breaks, in which case we find a strong positive relationship.Long memory;US inflation rates;forecast performance;Occasional breaks

    Structural breaks and long memory in US inflation rates: do they matter for forecasting?

    Get PDF
    There is substantial evidence that several economic time series variables experience occasional structural breaks. At the same time, for some of these variables there is evidence of long memory. In particular, it seems that inflation rates have both features. One cause for this finding may be that the two features are difficul

    Inflation rates; long-memoray, level shifts, or both?

    Get PDF
    We examine if US inflation rates series can be characterized by a long-memory model, by a model with occasional level shifts or by a new model, which jointly captures the two features. Through simulations we show that this new model can be usefully applied in practice. For 23 inflation rate series we find that generally the long-memory model is best, both in t

    Inflation and Gauge Hierarchy in Randall-Sundrum Compactification

    Get PDF
    We obtain the general inflationary solutions for the slab of five-dimensional AdS spacetime where the fifth dimension is an orbifold S1/Z2S^1/Z_2 and two three-branes reside at its boundaries, of which the Randall-Sundrum model corresponds to the static limit. The investigation of the general solutions and their static limit reveals that the RS model recasts both the cosmological constant problem and the gauge hierarchy problem into the balancing problem of the bulk and the brane cosmological constants.Comment: 9 pages, revtex, minor changes and more references adde

    Quark and Lepton Masses in 5D SO(10)

    Full text link
    We construct a five dimensional supersymmetric SO(10)×\timesD3_3 grand unified model with an S1/(Z2×Z2)S^1/(Z_2 \times Z^\prime_2) orbifold as the extra dimension. The orbifold breaks half of the supersymmetry and breaks the SO(10) gauge symmetry down to SU(4)C×SU(2)L×SU(2)R{\rm SU(4)}_C \times {\rm SU(2)}_L \times {\rm SU(2)}_R. The Higgs mechanism is used to break the remaining gauge symmetry the rest of the way to the Standard Model. We place matter fields variously in the bulk and on the orbifold fixed points and the resulting massless fields are mixtures between these brane and bulk fields. A chiral adjoint field in the bulk gets a U(1)X_X vacuum expectation value, resulting in an XX-dependent localization of the bulk matter fields and the Standard Model Higgs field. This Higgs field localization allows us to simultaneously explain the hierarchies mu<mdm_u < m_d and mtmbm_t \gg m_b. The model uses 11 parameters to fit the 13 independent low energy observables of the quark and charged lepton Yukawa matrices. The model predicts the values of two quark mass combinations, \f{m_u}{m_c} and mdmsmbm_d m_s m_b, each of which are predicted to be approximately 1σ1 \sigma above their experimental values. The remaining observables are successfully fit at the 5% level.Comment: 52 pages, published version, includes more discussion of 6D version of mode

    In vivo anomalous diffusion and weak ergodicity breaking of lipid granules

    Full text link
    Combining extensive single particle tracking microscopy data of endogenous lipid granules in living fission yeast cells with analytical results we show evidence for anomalous diffusion and weak ergodicity breaking. Namely we demonstrate that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory. The associated violation of ergodicity leads to a characteristic turnover between two scaling regimes of the time averaged mean squared displacement. At longer times the granule motion is consistent with fractional Brownian motion.Comment: 4 pages, 4 figures, REVTeX. Supplementary Material. Physical Review Letters, at pres

    Running of Gauge Couplings in AdS5 via Deconstruction

    Full text link
    Running of gauge couplings on a slice of AdS5 is examined using the deconstruction set-up. Logarithmic running instead of (linear) power law is justified when the cutoff is lower than the curvature scale. Most of interesting features in warped gauge theory including the localization of Kaluza-Klein modes, the widening of higher Kaluza-Klein spectrum spacing are well captured within the framework of the deconstruction.Comment: 20 pages, 3 figures, revtex, refereces added and typos corrected; the version published in JHE

    Gauge coupling renormalization in orbifold field theories

    Full text link
    We investigate the gauge coupling renormalization in orbifold field theories preserving 4-dimensional N=1 supersymmetry in the framework of 4-dimensional effective supergravity. As a concrete example, we consider the 5-dimensional Super-Yang-Mills theory on a slice of AdS_5. In our approach, one-loop gauge couplings can be determined by the loop-induced axion couplings and the tree level properties of 4-dimensional effective supergravity which are much easier to be computed.Comment: 18 pages, JHEP style; 1-loop corrections to gauge kinetic functions are fully computed, references are adde

    A Note on Non-compact Cauchy surface

    Full text link
    It is shown that if a space-time has non-compact Cauchy surface, then its topological, differentiable, and causal structure are completely determined by a class of compact subsets of its Cauchy surface. Since causal structure determines its topological, differentiable, and conformal structure of space-time, this gives a natural way to encode the corresponding structures into its Cauchy surface

    Recent Progress and Advances in Stimuli-Responsive Polymers for Cancer Therapy

    Get PDF
    The conventional chemotherapeutic agents, used for cancer chemotherapy, have major limitations including non-specificity, ubiquitous biodistribution, low concentration in tumor tissue, and systemic toxicity. In recent years, owing to their unique features, polymeric nanoparticles have been widely used for the target-specific delivery of drugs in the body. Although polymeric nanoparticles have addressed a number of important issues, the bioavailability of drugs at the disease site, and especially upon cellular internalization, remains a challenge. A polymer nanocarrier system with a stimuli-responsive property (e.g., pH, temperature, or redox potential), for example, would be amenable to address the intracellular delivery barriers by taking advantage of pH, temperature, or redox potentials. With a greater understanding of the difference between normal and pathological tissues, there is a highly promising role of stimuli-responsive nanocarriers for drug delivery in the future. In this review, we highlighted the recent advances in different types of stimuli-responsive polymers for drug delivery
    corecore