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Abstract

There is substantial evidence that several economic time series vari-

ables experience occasional structural breaks. At the same time, for some

of these variables there is evidence of long memory. In particular, it seems

that inflation rates have both features. One cause for this finding may be

that the two features are difficult to distinguish using currently available
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econometric tools. Indeed, various recent studies show that neglecting oc-

casional breaks may lead to a spurious finding of long-memory properties.

In this paper we focus on this issue within the context of out-of-sample

forecasting. First, we show that indeed data with breaks can be viewed as

long-memory data. Next, we compare time series models with structural

breaks, models with long-memory and linear autoregressive models for 23

monthly US inflation rates in terms of out-of-sample forecasting for var-

ious horizons. A key finding is that the linear models do not perform as

well as the other two, and that the model with breaks and the model with

long memory perform about equally well. We also examine their joint

performance by combining the forecasts. A by-product of our empirical

analysis is that we can relate the value of the long-memory parameter

with the number of detected breaks, in which case we find a strong posi-

tive relationship.

KEY WORDS: Occasional Breaks; Long Memory; US Inflation Rates;

Forecast Performance
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1 Introduction

Several economic time series seem to experience occasional structural breaks.

Some of these series also display long memory, as evidenced by the empirical

suitability of certain long-memory models. Recent studies show that time se-

ries processes with occasional breaks may generate a long-memory effect in the

autocorrelation function. There are also studies which suggest that data from

one model can be captured in a model of the other type, and the other way

around. Of course, the key question remains whether it matters for forecasting

which model is used? Or otherwise, should we pay effort in making a formal

distinction between the two models, or should we perhaps seek for a model that

contains the two features? Another related question concerns the best model-

ing and forecasting strategy for a given forecasting horizon. Indeed, it may be

that one model is better for short-term forecasts, while another is better for the

longer horizon.

Long memory implies that shocks have a long-lasting effect. A popular

application of long-memory time series models concerns inflation. There is sub-

stantial evidence that inflation rates have long memory, a feature which can be

captured by a fractionally integrated I(d) model, see Hassler and Wolters (1995),

Bos, Franses and Ooms (2001) and several papers cited in Baillie (1996). Al-

ternatively, US inflation rates may perhaps show long memory because of the

presence of neglected occasional breaks in the series rather than that they are re-

ally I(d). In this paper, we examine whether evidence of long memory in various

inflation rates has any correlation with occasional breaks in terms of in-sample

estimation and out-of-sample forecastability. We show that there might exist a

long-memory component in US CPI inflation rates because of occasional breaks.

This long-range dependence, however, makes no significant difference between

occasional breaks model and I(d) model in terms of out-of sample forecasting

performance.

The paper is organized as follows. In Section 2 we discuss the two models,

and we show that it may not be easy to make a formal distinction between
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long memory and breaks in practice. The estimation methods and methods to

generate forecasts are presented in Section 3. In Section 4, we fit both models

to 23 US inflation series in order to see which does better in terms of out-of-

sample forecasting, where we also include a regular autoregressive model for

comparison. We find that almost all autoregressive models can be improved,

but that there is not much difference in performance between the two models of

our interest. This leads to several suggestions for further research, as we outline

in Section 5.

2 Long-Memory and Occasional Breaks

In this section we discuss a class of models which can usefully describe long-term

persistence of shocks. The ARFIMA model, or simply I(d) model, which will

be discussed further below, has been reguarly used to describe the persistence

of economic and financial data, see for example articles in the special issue of

the Journal of Econometrics, 73, 1996. Inference on the dynamics of such a

time series is usually based on the autocorrelation function, where its decay

pattern measures the persistence of the process. Interestingly, a typical long-

memory decay pattern can also be generated by neglected structural breaks.

However, the theoretical and empirical econometric literature on long memory

and on structural change have evolved independently. Recently, there have

appeared studies which explain how infrequent stochastic breaks can create

strong persistence in the autocorrelation structure, see Mikosch and Stărică

(1999), Granger and Hyung (2000), and Diebold and Inoue (2001). To illustrate,

we review the Occasional-Break model and the I(d) model briefly and we show

that occasional structural change is approximately observationally equivalent to

long memory.
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Consider a simple model with R occasional breaks in the mean, that is,

yt = µ0 + ut, if 0 < t ≤ k1

yt = µ1 + ut, if k1 < t ≤ k2

· · ·
yt = µR + ut, if kR < t ≤ T (1)

where ut follows an ARMA process

Φ (L)ut = Θ (L) εt (2)

with εt is i.i.d(0,σ2
ε) for t = 1, ..., T , and with Φ (L) =

¡
1− φ1L− · · ·− φpLp

¢
and Θ (L) = (1+ θ1L+ · · ·+ θqLq) are polynomials of finite orders p and q in
the usual lag operator L. We assume all roots of Φ (z) = 0 and Θ (z) = 0 to be

outside of the unit circle.

We use this model to examine ’spurious’ long-memory effects caused by

neglected occasional breaks and its consequence for forecasting. Of course, for

our empirical data we need to estimate R, see Section 3 below. To examine

the effects of neglecting occasional breaks in a more theoretical way, a slightly

different version of (1) - (2) turns out to be more useful. This model is,

yt = mt + ut, (3)

where ut is a noise variable, and occasional level shifts, mt, are controlled by

two variables qt (date of break) and ηt (size of jump), as

mt = mt−1 + qtηt = m0 +
tX
i=1

qiηi, (4)

where ηt is i.i.d(0,σ
2
η). We assume that qt follows an i.i.d. binomial distribution,
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that is,

qt =

 0, with probability 1− p
1, with probability p

(5)

Combining (3) with (4) yields occasional level shifts in the mean of yt, which is

thus represented by

yt = {m0 + q1η1 + · · ·+ qtηt}+ ut (6)

The expected number of breaks for a given sample is Tp. Note that two models

in (1) and (6) can be equivalent by setting m0 = µ0, Tp = R, and so on.

Now we turn to a description of a long-memory time series model. The

ARFIMA (p, d, q) model is widely used for series with long memory, and usually

it is referred to as the I(d) model. In this paper, we consider the following

specification, that is,

Φ0 (L) (1− L)d (yt − µ) = Θ0 (L) εt, (7)

with similar conditions for Φ0 (L) and Θ0 (L) as (2). For any real d > −1, the
fractional difference operator, (1− L)d, is defined by its Maclaurin series, that
is,

(1− L)d =
∞X
j=0

πjL
j , πj =

j − 1− d
j

πj−1, π0 = 1. (8)

From this expression we can infer already a potential slow decay in the

autocorrelation function. The ARFIMA model is a flexible statistical tool to

describe the behavior of the autocorrelations at high lags, that is, the long-term

persistence. The long-term decay is solely determined by d, which is also called

the memory parameter. It can be shown that the autocorrelation function ρk,

is proportional to k2d−1 as k → ∞. Consequently, the autocorrelations of this
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model decay hyperbolically to zero as k → ∞, in contrast to the exponential
decay in a stationary ARMA model.

One way to estimate the value of d is to use the Geweke and Porter-Hudak

(1983) (henceforth GPH) method, which is based on the following regression,

that is,

ln {I(ωj)} = c− d ln
©
4 sin2 (ωj/2)

ª
+ uj , j = 1, ..., g(T ), (9)

where I(ωj) = 1
2π

¯̄̄PT
i=1 yt exp (iωjt)

¯̄̄2
is the periodogram at frequency ωj =

2πj/T , which depends on the sample size T . Often, g(T ) = T 1/2 is used.

It can be proved that it is not easy to make a formal distinction between

the break model and I(d) model in practice. The formal proof of ”observational

equivalence” concerns rare breaks, achieved by letting the break probability to

shrink with T , which is similar in spirit to a ”local to unity” asymptotic analysis.

The key idea is to let p decrease with the sample size, so that regardless of the

sample size, realizations tend to have the same number of breaks. For any fixed

sample size T , realizations tend to have just a few breaks.

Assume that p → 0 as T →∞, and that limT→∞Tp = R, where R is non-

zero finite constant. Let yt be a series from (3), (4) and (5) and we assume ut in

(3) is i.i.d(0,σ2
u) for simplicity, then the estimated value of d using GPH method

with g(T ) = T 1/2, d̂GPH
p→ d∗such that 0 <

³
1+ 4π2 σ2

u

Rσ2
η

´−1

< d∗ < 1 as

T →∞, see Granger and Hyung (2000) for details. It is straightforward to show
that this also holds for other estimation methods, like for example the Kim and

Phillips (2000) modified log periodogram (henceforth MLP) regression estimator.

When the values of R and σ2
η increase, the estimated memory parameter d

deviates further from zero. More breaks or a larger size of the break cause more

persistent memory of the series. For example, increases in R or in σ2
η make

this process to become more similar to an I(1)process. In the empirical section

below, we will examine if the supposed link between R and d holds in practice.

The reverse direction of ”observational equivalence” can be understood as

well. The long memory of a time series causes spurious breaks, at least, when
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relying on standard estimation methods of breaks. Unlike I(0) processes, I(d) or

I(1) processes have different effects on the estimated number of breaks. When

the DGP is an integrated or fractionally integrated series without breaks, spu-

riously many breaks (but with different numbers depending on the value of d)

are inferred, see Nunes, Kuan and Newbold (1996) for the I(1) case. Suppose

the DGP of yt is given by (7) without break, one finds a break point near the

middle of the time series when d > 0 by the Schwarz-Bayesian criterion (SBC).

Simulations in Granger and Hyung(2000) suggest a positive relation between

the number of breaks and the value of d in a finite sample.

In sum, it seems that long-memory models and models with occasional

breaks can capture the same kind of phenomena, even though their mathe-

matical expressions are rather different.

3 Estimation and Forecasting methods

As we aim to compare the two models of interest in practical situations, we now

turn to a discussion of estimation and forecasting methods in this section.

3.1 The Model with Breaks

In this section we focus on how to identify break points with dynamic com-

ponents in a parametric model, for example by introducing lagged dependent

variables so as to have an autoregressive model. Next we discuss how to select

the order of the autoregressive model. As indicated in Pesaran and Timmer-

mann (2000), little is known about the properties and optimality of alternative

forecasting methods under breaks. They discuss how to optimally combine

pre-break and post-break data in the mean squared error sense, and find that

forecasting accuracy can be improved by pre-testing for a structural break. In

the present paper, we abstain from a selection of an optimal sample size to

forecast out of sample when structural breaks have in fact occurred.
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We use the following ARMA representation.

yt = µt + ut, ut = ψ (L) εt =
∞X
j=0

ψjεt−j , (10)

and we assume there are R breaks in µt as in (1). We can transform this model

to

φ (L) yt = φ (L)µt + εt, (11)

where φ (L) = ψ (L)−1 . For practical purposes, we restrict this infinite order

model to

yt = µt + φ1(yt−1 − µt−1) + · · ·+ φp(yt−p − µt−p) + εt, (12)

which we will call as the BREAK model. We use Bai and Perron (1998)’s

sequential procedure to estimate the breaks. To select a proper lag in (12), we

use the following algorithm.

(a) We estimate the number of breaks by Bai and Perron (1998)’s sequential

procedure, while assuming certain properties of the residuals, see Assump-

tions A4 in Bai and Perron (1998). The dynamic effects are incorporated

in an indirect nonparametric approach, which leaves the dynamics in the

disturbances and applies a nonparametric correction for serial correlation

in the residuals.

(b) After filtering out the breaks from the series, we can estimate the ARMA

structure in the residual series ût = ŷt − µ̂t in (10) and we choose the
number of lags p by minimizing AIC.

(c) Once p has been determined, we estimate the number of breaks using the

sequential procedure again, without a serial correlation assumption in the

errors, but where lagged dependent variables are allowed as regressors in

(12).
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It seems useful at this stage to consider Bai (1997)’s repartition estimation

procedure. When the first break point is identified at k, the whole sample is

divided into two subsamples with the first subsample consisting of k ∈ (1, T )
observations and the second subsample consisting of the rest of the observations

(T −k). One then estimates a break point for the subsample where a hypothesis
test of parameter constancy fails. Divide the corresponding subsample further

into subsamples at the newly estimated break point, and perform parameter

constancy tests for the hierarchically obtained subsamples. This procedure is

repeated until parameter constancy is not rejected for all subsamples. Bai (1997)

shows how the repartition procedure coupled with hypothesis testing can yield

a consistent estimate for the true number of breaks. The details of the test

statistic and methods are given in Bai (1997).

The number of estimated breaks can be different across the Bai (1997) and

Bai and Perron (1998) methods. Some of our unreported empirical results show

that Bai (1997)’s repartition method often gives a much larger number of breaks

as compared to Bai and Perron’s sequential method. Also the estimation results

under different assumptions of dynamic effects (parametric or nonparametric as-

sumptions in (a) and (c)) are a little different. However, methods of endogenous

determination of breaks are prone to over-estimate the number of breaks in the

presence of nonlinearity, such as smooth transition, nonlinear trend, and so on.

There is another possibility of overfitting under the existence of heteroskedastic-

ity. Therefore, we use the estimation results from algorithm (c), which is giving

a conservative estimate of the number of breaks.

We must mention here that we also considered in our empirical analysis the

so-called STOPBREAK model, developed in Engle and Smith (1999). This

model includes an endogenous smooth transition function to indicate structural

breaks in (3), that is,

qt(γ) =
(ut + · · ·+ ut−s)2

γ + (ut + · · ·+ ut−s)2 , γ > 0, s > 0 (13)

with mt = mt−1 + qt−1ut−1. Smith (1999) generalizes this process by allowing
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past deviations from mt to have an effect on short-horizon forecasts. Since mt

represents the long-run forecast of yt, given information up to time t− 1, these
past deviations take the form yt−i −mt−i+1. Specifically, the model is

yt = mt + α (L) (yt−1 −mt) + ut (14)

where α (L) = α1L + α2L
2 + · · · + αpLp and α (1) < 1. As this model can be

seen as a serious contender to the BREAK model in (12), we tried to estimate

the parameters for the empirical data to be introduced above. However, we

found that the available estimation method gave very unstable and inaccurate

results, and in fact did so far a range of specifications of (13). Hence, we further

abstained from considering this model.

3.2 The I(d) Model

Geweke and Porter-Hudak (1983) show that, when attention is confined to fre-

quencies near zero, the differencing parameter can be estimated consistently

from the least-squares regression in (9). However this method is only valid

when d < 1
2 . In our empirical examples of inflation rates, there is no reason to

believe |d| < 1
2 , and hence we have to allow for nonstationarity of this series by

allowing that d > 1
2 is also possible. Similar to the BREAK model we adopt a

two-step estimation method. We use the following procedure to estimate d and

ARMA parameters.

(a) Estimate d̂ by using Kim and Phillips (2000)’s modified log periodogram

regression, which is useful in cases where nonstationarity is suspected.

(b) Calculate ỹt =
Pt−1
j=0 π̃j (yt−j − µ̂), t = 1, ..., T , where π̃j is calculated

from (8) using d̂.

(c) Estimate the ARMA parameters of Φ0 (L) ỹt = Θ0 (L) εt for the time series

ỹ1, . . . , ỹT . This can be done by using MLE or least-squares regression.
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The consistency and the central limit theorem of this numerical algorithm

can be proven by using Beran (1995)’s Theorem 1 and the results in Kim and

Phillips (2000). The estimated value of d is robust against serial correlation

which is shown in Kim and Phillips (2000). Upon using the estimated value

d̂, we can estimate the ARMA coefficients consistently, which is due to the

fact that the ultimate decay of the autocorrelations and the coefficients of the

AR(∞) representation is exponential.
For comparison we also used the frequency domain MLE (see Beran (1994)

and Breidt, Crato and de Lima (1998)) and Beran (1995)’s approximate maxi-

mum likelihood method. Note that the methods of Geweke and Porter-Hudak

(1983) and frequency domain MLE are based on assumption of |d| < 1
2 , but

approximate MLE of Beran (1995) and the MLP regression estimator are con-

sistent for the nonstationary region too (d > 1
2).

The assessment of the goodness of fit of a fractionally differenced ARMA

model is not straightforward, as pointed out by Hosking (1984). The ARFIMA

model allows for jointly modeling the short-term and long-term behavior of a

time series. The AIC, which concentrates on the short-term forecasting ability

of the fitted model, may not be the best criterion for all applications involving

fractional differencing, but for the present purpose we do implement it as

AIC = ln σ̂2
ε + 2(p+ q + δd)/T

where δd is 1 if the d parameter is estimated and 0 if it is fixed at zero.

For out-of-sample forecasting, we consider the ”naive” method. We compute

h-step ahead forecasts recursively, using π̂ (L) found from:

π̂ (L) = Θ̂ (L)−1 Φ̂ (L) (1− L)d̂
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where π̂ (L) =
P∞

j=0 π̂jL
j , and hence

ŷT+h =
T−1X
j=0

π̂j+h (yT−j − µ̂) , h = 1, 2, ....

This naive method can also be applied to nonstationary series with d > 1
2 .

4 Forecasting US Inflation Rates

In this section we use the BREAK model and the I(d) model for forecasting

inflation rates. We consider 23 monthly US Consumer Price Index series which

are randomly chosen from the U.S. City Average data set. The sample period

covers from 1967:01 - 2000:08 and the base years are 1982 - 1984. All series are

considered in seasonally adjusted format. Inflation rates are constructed from

the price indices by taking 100 times the first differences of the logarithmic

transformed series. In Table 1 we present the list of variables, where we approx-

imately arrange the series from highly aggregated to less aggregated series.

First, we estimate the parameters and we use the estimated values for all out-

of-sample forecasts. We call this the static method. We choose 1967:01-1990:12

as the in-sample period, which has 288 observations, and hence the out-of-

sample period is 1991:01-2000:08 with 116 observations. Second, we re-estimate

the model parameters and generates forecasts when a new observation is added

to series. We call this the recursive method. For the recursive method, we

estimate the parameters of the three models sequentially, starting with sample

1967:01-1990:12 and ending with sample 1967:01-2000:07. We choose lag p of

each model using AIC for the short-sample period and we fix this value in the

subsequent analysis. For Series 18 (Alcoholic beverages), results are based on

after removing 3 outliers.
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4.1 Empirical Results from In-sample Estimation

The number of breaks in each series is estimated using Bai and Perron (1998)’s

sequential method. First, we estimate breaks by the sequential method using

non-parametric serial correlation correction. After filtering out break compo-

nents, we fixed the AR orders in the filtered residuals by minimizing AIC. Next,

using the pre-determined AR order to correct serial correlation, we apply Bai

and Perron’s method again. We allow up to 10 breaks, and the minimum length

between breaks is set at 12 observations (1 year) to reduce the possibility that

any heteroskedasticity in a series is mistaken for a break.

For an example of break analysis, let us examine the results for Series 1 (All

Items). There are four breaks in the series for the full sample period (three

breaks are obtained for the shorter sample period), see the third column of

Table 2. Interestingly, two out of four breaks (1973:July and 1982:July) are

similar to the break dates of Bos, Franses and Ooms (2001), in which they only

provide a historical explanation of their choice of two break dates. Our analysis

additionally detects one more regime between the two oil shocks from October

1974 to September 1978 (see Figure 1).

As we expand the size of sample, we estimate more breaks except for Series

13. From this result we expect that recursive estimation of the occasional breaks

model would perhaps provide better forecasts. If there are more breaks after the

in-sample period, forecasts from the occasional breaks model will not be accurate

when using the static method. In the next subsection we will elaborate on the

difference between the two approaches.

For the estimation of the long-memory parameter, we used four methods:

the method of Geweke and Porter-Hudak (1983), of Kim and Phillips (2000), the

frequency domain MLE and Beran (1995)’s method. GPH, Kim and Phillips

(2000) and Beran (1995)’s methods provide similar results. In theory, GPH

is valid for |d| < 1
2 , but it appears to be quite robust for the non-stationary

region too, at least in our empirical analysis. Recall that the frequency domain

MLE uses the spectral density and is defined for the range −1
2 < d < 1

2 only.
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Although this method is an efficient estimation method, it is not recommended

to use in this context as we cannot impose an a prior plausible restriction on

the memory parameter of inflation rate.

We estimate d for the shorter sample period and compare it with the esti-

mated values for the full-sample period, see Table 2 for the estimated values of d

using Kim and Philips (2000)’s method, which turns out to be the most reliable

method. The estimated memory parameter of ”(1) All Items” has the high-

est value of d among CPIs (regardless of estimation methods). CPIs from the

service sector and the energy sector show a higher memory parameter as com-

pared to the estimated memory parameters of food, agricultural or industrial

products.

Series 15 - 23 have a relatively small estimated number of breaks, which

suggests a possible relationship between breaks and the degree of aggregation.

A by-product of our empirical analysis is now that we can correlate the value

of the long-memory parameter with the degree of aggregation. Although we do

not use a rigorous classification of aggregation, we could however assume that

the number of the time series in Table 1 correlates strongly with its aggregation

level. When we regress d̂ of series i on an intercept and the series number i, we

get a t-statistic of -3.22 for the slope coefficient. This suggests that the memory

of a series is getting more persistent for higher aggregated series.

Furthermore, Table 2 also suggests that there is perhaps a link between the

estimated number of breaks R and d. Indeed, when we regress d̂ on an intercept

and this number R̂, we get a t-value of 3.11, which seems to agree with the

conjecture in Granger and Hyung (2000). If we further consider the size of

break by taking the average of squared jump size of breaks, and regress d̂ on an

intercept and the number of breaks times the size of break, we obtain a positive

slope coefficient but it is not significant (t-value is 1.29).
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4.2 Out-of-sample Forecasts

We now turn to an evaluation of the forecasting performance of various models.

We compare predictability of the BREAK model, I(d) model and a linear AR

model for an I(0) series for the 23 US inflation series, where we set the forecast

horizon h at 1,3,12 and 24. Tables 3 and 4 present the results of point forecasts

and cumulative predictions when we use the static method. Tables 5 and 6

present the results for the recursive method. Finally, in Table 7 we present

encompassing test results of one-step ahead forecasts for the static and recursive

cases

We compute the root mean squared of forecast errors (RMSFE). For com-

parison, we report the ratios of the RMSFEs for the BREAK and I(d) model

over the RMSFE of linear AR models. We find that the occasional breaks model

and fractionally integrated model perform better than almost all AR models,

which can be noticed from the fact that the ratios are almost always below 1.

There is however not much difference in performance between the two models

of interest, I(d) model and Break model. The results in Tables 3 to 6 show that

one model is not dominated by the other model for all series. By the way, we

also estimated an I(1) specification for some series, but we find that forecasts

are not better compared with the I(0) specification.

Typically, the long-run forecasts of linear AR models are changing little when

new observations are added, due to the fact that these forecasts converge to the

unconditional mean. If there is a changing mean, forecasts of linear models suffer

from bias and consequently would produce poor forecasts. Given the presence

of structural breaks, and assuming it is easy to detect, the occasional break

model can give better forecasts than a linear AR model. The break model can

adjust its forecasts immediately when structural changes are detected. However,

the occasional breaks model can be worse than the linear AR model when there

exist the nonlinear trending component, the changing variance or a recent break

(until we accumulate enough information, we do not know if break occurred or

not), see for example Series 2, 9 or 16. Typically, after a structural break, the
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forecasts from a BREAK model are not accurate for a while, simply because

the break is not evident with only a few observations, see Figure 2, where we

display the forecast errors for Series 2.

In contrast, the I(d) model allows for a long-term deviation from the long-run

mean, due to the fact that the I(d) model uses all past information. It has slow

hyperbolic autocorrelation and impulse response decay, compared to the faster

geometric decay of ARMA processes. Hence, the I(d) model is supposed to have

quite a long-run predictability because it can capture long-run components from

the series. Indeed we often find that the I(d) model performs well in Tables 3

and 4, in fact often better than the BREAK model.

Given the different break numbers in Table 2 for the short-sample and full-

sample data, the recursive estimation should improve the forecastability of oc-

casional breaks model. It turns out that the occasional breaks model can detect

short-run components well, and that this gets bettter if the model is updated us-

ing recent information. Hence, the model performs relatively well in a recursive

setting but not in a static setting (compare Tables 3 and 5 or compare Tables

4 and 6). For example, we can observe dramatic improvements in forecasts of

Series 7, 9 and 11 by using the recursive method.

Overall the results in Tables 3 to 6 show that the I(d) model performs con-

stantly, but the forecastability of the BREAKmodel gets improved substantially

using the recursive method. Of course, the break model has similar memory

properties as the I(d) process, but it fails to capture the dynamics of break

components by itself if we use the static method. It may now be, though, that

each model alone does not capture all of the persistence in US inflation rates.

Therefore, a more complete analysis would allow for both representations. For

example, one can consider to combine forecasts, ŷt = αŷ1t+(1−α)ŷ2t, 0 ≤ α ≤ 1,
where ŷ1t and ŷ2t are the forecasts from occasional breaks model and I(d)model,

respectively. Combining forecasts would be useful if a test (Harvey, Leybourne
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and Newbold, 1998) would indicate so. The test is based on the regression where

e1t = α (e1t − e2t) + ut, (15)

where eit = yt − ŷit is the forecast error of model i. If a composite predictor
formed as a weighted average of two individual forecasts is considered, then the

forecast of benchmark model is said to encompass the alternative forecast if the

inferior forecast’s optimal weight in the composite predictor is equal to zero.

Our case is the issue of testing for forecast encompassing when two forecasts

of the same quantity are available. This analysis provides an easy-to-compute

statistical measure of the relative forecasting performance of the models under

scrutiny. If one forecast incorporates all the information, nothing can be gained

by combining forecasts.

From Table 7 we see that in most cases, the combination of the two forecasts

does not improve predictability. In terms of lower MSFE, we choose a bench-

mark and alternative model of each series and we estimate α and its standard

error in (15). Only for 5 out of 23 series, forecasts can be improved by combin-

ing inferior forecasts for both the static and recursive case. Hence, the BREAK

or the I(d) model can forecast about equally well and nothing seems to be left

to be predicted by the other model. This result implies that even in terms of

out-of-sample forecasts, it is not easy to distinguish between the I(d) and the

occasional breaks model.

5 Conclusion and Extensions

In this paper we compared time series models with structural breaks, models

with long memory and linear autoregressive models for 23 monthly US inflation

rates in terms of out-of-sample forecasting. Linear models did not perform as

well as the other two. The model with breaks and the model with long-memory

performed about equally well. We also examined their joint performance by

combining the forecasts, which did not change the overall conclusion that these
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two models are difficult to distinguish.

The interesting topic for further research is now given by exploiting the

possibility that the BREAK and I(d) model can be summarized into one single

model. One motivation for this may be that both individual models capture a

long-memory component to some extent, but that a joint model would be able

to capture all long memory. To construct such a joint model, one can think of

Model A: yt = mt + ut, (1− L)dmt = qtηt,

Model B: yt = mt + ut, mt = mt−1 + qtηt, (1− L)d ut = εt, or
Model C: (1− L)d yt = mt + ut, mt = mt−1 + qtηt,

where each builds on an individual model considered in this paper by adding

features of the other model. Our subsequent work will be to develop estimation

and inference techniques for these models.
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Table 1: Descriptions of U.S. City Average CPI

Series Items in CPI

1 All items
2 Durables
3 Commodities
4 Energy commodities
5 Commodities less food
6 Commodities less food, energy, energy commodities
7 Commodities less food, energy, and used cars and trucks
8 Services
9 Medical care services
10 Transportation services
11 Transportation
12 Housing
13 Electricity
14 Fuels
15 New vehicles
16 Men’s and boys’ apparel
17 Footwear
18 Alcoholic beverages
19 Eggs
20 Beef and veal
21 Fish and seafood
22 Fruits and vegetables
23 Potatoes

Source: Economagic.com: Economic Time Series Page .

Note: All of series are seasonally adjusted and 1982 - 84 =100.
Sample period, 1967:01-2000:08 with 404 observations.
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Table 2: Long Memory Parameters of CPI Series

Break d (s.e.)
Series Short-sample Full-sample Short-sample Full-sample

1 3 4 .973 (.235) .912 (.195)
2 3 4 .635 (.214) .541 (.205)
3 3 3 .742 (.245) .607 (.175)
4 0 0 .617 (.281) .626 (.159)
5 2 2 .633 (.387) .560 (.140)
6 3 6 .647 (.133) .550 (.155)
7 5 6 .657 (.206) .672 (.150)
8 2 3 .759 (.214) .698 (.159)
9 3 4 .725 (.148) .689 (.108)
10 0 6 .504 (.243) .712 (.212)
11 0 2 .467 (.282) .460 (.252)
12 6 6 .886 (.163) .829 (.139)
13 4 3 .778 (.243) .582 (.110)
14 3 3 .639 (.181) .765 (.215)
15 0 5 .471 (.152) .364 (.149)
16 0 1 .278 (.153) .155 (.139)
17 1 2 .376 (.176) .702 (.115)
18 0 5 .550 (.143) .477 (.114)
19 0 0 .142 (.200) .060 (.222)
20 0 0 .226 (.135) .199 (.093)
21 2 2 .700 (.301) .573 (.141)
22 0 0 .348 (.173) .517 (.229)
23 0 0 -.341 (.227) -.365 (.167)

Note: Short-sample period, 1967:01-1990:12 with 288 observations
and Full-sample period 1967:01-2000:08 with 404 observations. The
numbers d with estimated standard error (s.e.) of the CPI series are
estimated using Kim and Philips (2000)’s modified log periodogram
regression. The number of breaks is estimated by Bai and Perron
(1998)’s sequential method using a parametric dynamic autoregres-
sive specification.

Note: Series 18 has 3 outliers in the short-sample period, which we
delete prior to estimation.
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Table 3: Root Mean Squared Forecast Errors relative to a linear AR model
(where the parameters have been estimated only once for the in-sample data)

BREAK I(d)
Series h =1 3 12 24 1 3 12 24
1 0.971 0.934 0.806 0.691 0.977 0.923 0.850 0.720
2 1.012 1.002 0.787 0.648 0.950 0.872 0.740 0.705
3 0.962 0.977 0.869 0.807 0.980 0.961 0.924 0.943
4+ 1.000 1.001 1.001 1.001 1.064 1.072 1.114 1.058
5 0.946 0.892 0.831 0.930 0.984 0.941 0.898 0.878
6 0.946 0.908 0.734 0.713 0.910 0.770 0.598 0.622
7 1.156 1.230 0.909 0.771 0.958 0.887 0.732 0.684
8 1.008 1.005 0.900 0.774 0.884 0.725 0.512 0.455
9 1.558 1.489 0.903 0.778 0.715 0.614 0.506 0.583
10+ 0.999 0.997 0.994 0.994 0.931 0.920 0.853 0.869
11+ 1.001 1.004 1.005 1.005 1.009 0.985 0.962 0.947
12 0.944 0.930 0.648 0.506 0.935 0.821 0.597 0.489
13 0.907 0.887 0.850 0.849 0.929 0.868 0.854 0.861
14 0.911 0.913 0.906 0.865 0.977 0.975 0.971 0.930
15+ 0.996 0.994 0.994 0.994 0.812 0.719 0.705 0.807
16+ 1.000 1.001 1.001 1.001 0.970 0.955 0.961 0.971
17 0.965 0.967 0.935 0.925 0.954 0.959 0.936 0.944
18+ 0.997 0.995 0.988 0.986 0.929 0.895 0.805 0.812
19+ 0.995 0.996 0.997 0.998 1.003 1.001 1.004 0.998
20+ 1.001 1.002 1.002 1.002 1.001 0.958 0.942 0.953
21 0.974 0.986 0.953 0.919 0.996 0.986 0.941 0.923
22+ 0.999 0.999 0.999 0.999 1.035 1.014 0.993 1.001
23+ 0.996 0.994 0.995 0.998 1.043 1.064 1.049 0.999
# 12 7 9 10 11 16 14 13

Note: In-sample period, 1967:01-1990:12 with 288 observations and
out-of-sample period, 1991:01-2000:08 with 116 observations. Lags
are selected by AIC. + denotes no break is detected in the in-sample
period. We estimate breaks by Bai and Perron (1998)’s sequential
method. # denotes the number of times one of the two models has
a lower RMSFE.
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Table 4: Root Mean Squared Cumulative Forecast Errors relative to a linear AR
model (where the parameters have been estimated only once for the in-sample
data)

BREAK I(d)
Series h =1 3 12 24 1 3 12 24
1 0.971 0.865 0.715 0.613 0.977 0.832 0.724 0.592
2 1.012 1.132 0.860 0.620 0.950 0.781 0.616 0.583
3 0.962 0.964 0.863 0.687 0.980 0.905 0.808 0.655
4+ 1.000 1.003 1.009 1.027 1.064 1.045 1.405 1.751
5 0.946 0.775 0.557 0.474 0.984 0.851 0.645 0.573
6 0.946 0.954 0.711 0.625 0.910 0.618 0.370 0.365
7 1.156 1.599 1.154 0.861 0.958 0.781 0.542 0.500
8 1.008 1.015 0.960 0.848 0.884 0.569 0.372 0.342
9 1.558 1.684 1.191 0.958 0.715 0.479 0.408 0.467
10+ 0.999 0.993 0.986 0.984 0.931 0.836 0.577 0.546
11+ 1.001 1.010 1.017 1.022 1.009 0.939 0.782 0.693
12 0.944 1.018 0.689 0.498 0.935 0.659 0.403 0.323
13 0.907 0.855 0.560 0.487 0.929 0.731 0.453 0.413
14 0.911 0.907 0.671 0.400 0.977 0.948 0.861 0.691
15+ 0.996 0.992 0.991 0.990 0.812 0.628 0.581 0.629
16+ 1.000 1.002 1.007 1.009 0.970 0.909 0.781 0.770
17 0.965 0.935 0.723 0.613 0.954 0.911 0.703 0.673
18+ 0.997 0.989 0.979 0.977 0.929 0.798 0.587 0.588
19+ 0.995 0.989 0.953 0.929 1.003 0.983 0.953 0.929
20+ 1.001 1.004 1.007 1.008 1.001 0.881 0.762 0.753
21 0.974 0.974 0.783 0.590 0.996 0.938 0.632 0.564
22+ 0.999 0.996 0.982 0.973 1.035 0.963 0.924 0.894
23+ 0.996 0.985 0.961 0.941 1.043 1.176 1.073 0.968

# 12 4 5 4 11 19 18 19

Note: In-sample period, 1967:01-1990:12 with 288 observations and
out-of-sample period, 1991:01-2000:08 with 116 observations. Lags
are selected by AIC. + denotes no break is detected in the in-sample
period. We estimate breaks by Bai and Perron (1998)’s sequential
method. # denotes the number of times one of the two models has
a lower RMSFE.
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Table 5: Root Mean Squared Forecast Errors relative to a linear AR model
(where the parameters have been estimated recursively using expanding sam-
ples)

BREAK I(d)
Series h =1 3 12 24 1 3 12 24
1 0.970 0.976 0.878 0.789 0.996 0.957 0.926 0.778
2 1.039 1.075 0.900 0.723 0.974 0.939 0.857 0.813
3 0.959 0.986 0.893 0.872 1.003 0.979 0.959 0.890
4+ 1.000 1.000 1.000 1.000 1.101 1.068 1.124 1.008
5 0.945 0.919 0.861 0.858 0.990 0.929 0.930 0.901
6 0.905 0.864 0.716 0.713 0.907 0.818 0.685 0.709
7 0.948 0.984 0.814 0.716 0.976 0.943 0.835 0.770
8 0.999 0.991 0.917 0.790 0.935 0.839 0.621 0.519
9 1.098 1.086 0.750 0.705 0.873 0.796 0.644 0.689
10 0.976 0.979 0.954 0.972 1.001 0.942 0.890 0.885
11 0.966 0.964 0.944 0.946 1.054 0.945 1.019 0.979
12 0.919 0.931 0.713 0.568 0.958 0.890 0.680 0.555
13 0.901 0.895 0.863 0.869 0.943 0.903 0.886 0.901
14 0.930 0.937 0.930 0.905 0.991 0.992 1.024 1.016
15 0.976 0.967 0.991 0.997 0.858 0.779 0.766 0.871
16 1.008 1.014 0.994 1.006 1.092 1.018 1.047 1.006
17 0.995 0.966 0.948 0.940 0.951 0.970 0.954 0.955
18 0.963 0.976 0.939 0.928 0.948 0.931 0.854 0.855
19+ 0.996 0.997 0.999 0.999 1.022 0.981 1.001 1.001
20+ 1.000 1.001 1.001 1.001 1.054 1.072 1.012 0.989
21 0.968 0.984 0.962 0.941 1.004 1.001 0.966 0.945
22+ 0.999 0.999 0.999 1.000 1.145 1.027 1.048 1.073
23+ 0.998 0.997 0.998 0.999 1.030 1.003 1.012 1.003

# 17 11 15 13 6 12 8 10

Note: We estimate the parameters recursively, starting with sample
1967:01-1990:12. Lags are selected by AIC for the short-sample pe-
riod and we fix this value in the subsequent analysis. + denotes no
break is detected in the full-sample period. We estimate breaks by
Bai and Perron (1998)’s sequential method. # denotes the number
of times one of the two models has a lower RMSFE.
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Table 6: Root Mean Squared Cumulative Forecast Errors relative to a linear AR
model (where the parameters have been estimated recursively using expanding
samples)

BREAK I(d)
Series h =1 3 12 24 1 3 12 24
1 0.970 0.934 0.791 0.676 0.996 0.959 0.801 0.608
2 1.039 1.109 0.989 0.754 0.974 0.926 0.818 0.772
3 0.959 0.955 0.837 0.677 1.003 1.003 0.902 0.725
4+ 1.000 0.999 1.001 1.001 1.101 1.266 1.323 1.188
5 0.945 0.826 0.575 0.441 0.990 0.929 0.666 0.563
6 0.905 0.778 0.606 0.575 0.907 0.763 0.483 0.486
7 0.948 0.897 0.728 0.600 0.976 0.913 0.699 0.630
8 0.999 0.985 0.958 0.855 0.935 0.818 0.503 0.424
9 1.098 1.125 0.859 0.746 0.873 0.764 0.606 0.613
10 0.976 0.944 0.864 0.878 1.001 0.985 0.793 0.645
11 0.966 0.919 0.777 0.646 1.054 1.043 0.839 0.748
12 0.919 0.870 0.680 0.505 0.958 0.854 0.488 0.358
13 0.901 0.726 0.507 0.450 0.943 0.795 0.567 0.541
14 0.930 0.891 0.748 0.483 0.991 1.004 1.018 0.947
15 0.976 0.961 0.992 0.996 0.858 0.726 0.652 0.723
16 1.008 1.059 1.090 1.105 1.092 1.276 1.350 1.194
17 0.995 0.912 0.757 0.656 0.951 0.894 0.729 0.696
18 0.963 0.931 0.887 0.870 0.948 0.886 0.706 0.673
19+ 0.996 0.988 0.968 0.960 1.022 1.007 1.024 1.084
20+ 1.000 1.001 1.003 1.004 1.054 1.107 1.059 1.011
21 0.968 0.908 0.696 0.528 1.004 0.987 0.797 0.660
22+ 0.999 0.996 0.984 0.975 1.145 1.233 1.684 1.897
23+ 0.998 0.994 0.975 0.956 1.030 1.039 1.026 1.027

# 17 15 14 15 6 8 9 8

Note: We estimate the parameters recursively, starting with sample
1967:01-1990:12. Lags are selected by AIC for the short-sample pe-
riod and we fix this value in the subsequent analysis. + denotes no
break is detected in the full-sample period. We estimate breaks by
Bai and Perron (1998)’s sequential method. # denotes the number
of times one of the two models has a lower RMSFE.
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Table 7: Tests for one-step ahead Forecast Encompassing

Static method Recursive method
Series Break vs I(d) I(d) vs Break Break vs I(d) I(d) vs Break
1 0.35 (0.48) - -0.37 (0.53) -
2 - 0.17 (0.21) - -0.06 (0.27)
3 0.29 (0.31) - -0.15 (0.35) -
4 -1.11 (0.45) - -1.41 (0.37) -
5 -0.66 (0.50) - -1.09 (0.53) -
6 - 0.29 (0.21) 0.46 (0.37) -
7 - 0.08 (0.13) 0.22 (0.28) -
8 - -0.13 (0.19) - -0.27 (0.31)
9 - -0.04 (0.05) - -0.24 (0.15)
10 - -0.88 (0.39) 0.04 (0.40) -
11 0.35 (0.41) - -0.75 (0.33) -
12 - 0.47 (0.16) 0.24 (0.23) -
13 - 0.69 (0.26) -0.21 (0.36) -
14 -0.65 (0.36) - -0.43 (0.34) -
15 - -0.55 (0.18) - -0.56 (0.25)
16 - -0.24 (0.45) -0.20 (0.27) -
17 - -0.52 (0.89) - -0.16 (0.35)
18 - -0.45 (0.33) - -0.04 (0.55)
19 -1.29 (1.43) - -1.32 (0.78) -
20 0.49 (0.44) - -1.56 (0.55) -
21 0.26 (0.30) - -0.05 (0.36) -
22 -0.21 (0.41) - -0.63 (0.24) -
23 -0.23 (0.36) - -0.51 (0.52) -

Note: The values in the parenthesis are standard errors. Results
compare one-step ahead forecasts between Break and I(d) models.
In terms of lower MSFE, we choose a benchmark and alternative
model of each series and estimate α and its standard error in (15).
- denotes that we choose the other model as a benchamrk model.
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Figure 1: Inflation of CPI (Series 1: All Items)
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Figure 2: Forecasts Errors of Series 2 (Durables)
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