681 research outputs found

    Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target

    Get PDF
    We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of lambda similar to 1 mu mopen

    BOK to offer $8 bn loan program for financial institutions backed by corporate debt

    Get PDF

    Comparisons of physique, body composition, and somatotype by weight division between male and female collegiate taekwondo athletes

    Get PDF
    The aim of the study was to compare the physique, body composition and somatotype between male and female collegiate taekwondo athletes and specially focus on differences by weight division. 60 collegiate taekwondo athletes (male: 29, female: 31) voluntarily participated in the study. They were divided into four Olympic weight divisions (male for -58 kg, -68 kg, -80 kg, +80 kg, female for -49 kg, -57 kg, -67 kg, +67 kg). Anthropometric measurements included body weight, height, sitting height, body circumferences (relaxed arm, flexed arm, chest, waist, hip, thigh, and calf), bone widths (humerus and femur), and skinfold thicknesses (triceps, subscapular, suprailiac, thigh, and calf) were measured. The three somatotype components were assessed by Heath-Carter anthropometric method (Carter & Heath, 1990). Independent t-test and one-way ANOVA were applied to analyze difference of dependent variables. Significant level was set at .05. Male athletes were taller and heavier than female athletes. However, sum of skinfold thickness was significantly higher in female athletes than male athletes. The three somatotype components for male athletes were 3.4-3.5-3.1 and characterized with balanced mesomorphy. On the other hand, the somatotype of female athletes were 6.1-3.4-2.6 and characterized with mesomorphic endomorph. In male athletes -80 kg and +80 kg weight divisions were higher mesomorphy, but lower ectomorphy than -58 kg and -68 kg weight divisions. In female, -57 kg, -67 kg and +67 kg weight divisions were higher endomorphy and mesomorphy, but lower ectomorphy than -49 kg weight divisions. In conclusion, male athletes had higher anthropometric characteristics than female athletes except for the skinfold thickness. Female athletes had higher endomorphy, whereas male athletes had higher ectomorphy. Physique and somatotype were different between weight divisions both male and female athletes. This study provides a reference data of morphological characteristics of collegiate elite taekwondo athletes

    Toe Tissue Transfer for Reconstruction of Damaged Digits due to Electrical Burns

    Get PDF
    BackgroundElectrical burns are one of the most devastating types of injuries, and can be characterized by the conduction of electric current through the deeper soft tissue such as vessels, nerves, muscles, and bones. For that reason, the extent of an electric burn is very frequently underestimated on initial impression.MethodsFrom July 1999 to June 2006, we performed 15 cases of toe tissue transfer for the reconstruction of finger defects caused by electrical burns. We performed preoperative range of motion exercise, early excision, and coverage of the digital defect with toe tissue transfer.ResultsWe obtained satisfactory results in both functional and aesthetic aspects in all 15 cases without specific complications. Static two-point discrimination results in the transferred toe cases ranged from 8 to 11 mm, with an average of 9.5 mm. The mean range of motion of the transferred toe was 20° to 36° in the distal interphalangeal joint, 16° to 45° in the proximal interphalangeal joint, and 15° to 35° in the metacarpophalangeal joint. All of the patients were relatively satisfied with the function and appearance of their new digits.ConclusionsThe strategic management of electrical injury to the hands can be both challenging and complex. Because the optimal surgical method is free tissue transfer, maintenance of vascular integrity among various physiological changes works as a determining factor for the postoperative outcome following the reconstruction

    Outdoor-Useable, Wireless/Battery-Free Patch-Type Tissue Oximeter with Radiative Cooling

    Get PDF
    For wearable electronics/optoelectronics, thermal management should be provided for accurate signal acquisition as well as thermal comfort. However, outdoor solar energy gain has restricted the efficiency of some wearable devices like oximeters. Herein, wireless/battery-free and thermally regulated patch-type tissue oximeter (PTO) with radiative cooling structures are presented, which can measure tissue oxygenation under sunlight in reliable manner and will benefit athlete training. To maximize the radiative cooling performance, a nano/microvoids polymer (NMVP) is introduced by combining two perforated polymers to both reduce sunlight absorption and maximize thermal radiation. The optimized NMVP exhibits sub-ambient cooling of 6 °C in daytime under various conditions such as scattered/overcast clouds, high humidity, and clear weather. The NMVP-integrated PTO enables maintaining temperature within ≈1 °C on the skin under sunlight relative to indoor measurement, whereas the normally used, black encapsulated PTO shows over 40 °C owing to solar absorption. The heated PTO exhibits an inaccurate tissue oxygen saturation (StO2) value of ≈67% compared with StO2 in a normal state (i.e., ≈80%). However, the thermally protected PTO presents reliable StO2 of ≈80%. This successful demonstration provides a feasible strategy of thermal management in wearable devices for outdoor applications. © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH1

    The role of S100A4 for bone metastasis in prostate cancer cells

    Get PDF
    Background Prostate cancers frequently metastasize to bone, where the best microenvironment for distant colonization is provided. Since osteotropic metastasis of prostate cancer is a critical determinant of patients survival, searches for preventive measures are ongoing in the field. Therefore, it is important to dissect the mechanisms of each step of bone metastasis, including the epithelial-mesenchymal transition (EMT) and cross-talk between metastatic niches and cancer cells. Methods In this study, we established a highly bone-metastatic subline of human prostate cancer cells by selecting bone-homing population of PC3 cells after cardiac injection of eight-week-old male BALB/c-nude mice. Then we assessed the proliferation, EMT characteristics, and migration properties of the subline (mtPC3) cells in comparison with the parental PC3 cells. To investigate the role of S100A4, we performed gene knock-down by lentiviral transduction, or treated cells with recombinant S100A4 protein or a S100A4-neutralizing antibody. The effect of cancer cells on osteoclastogenesis was evaluated after treatment of pre-osteoclasts with conditioned medium (CM) from cancer cells. Results The mtPC3 cells secreted a markedly high level of S100A4 protein and showed elevated cell proliferation and mesenchymal properties. The increased proliferation and EMT traits of mtPC3 cells was inhibited by S100A4 knock-down, but was not affected by exogenous S100A4. Furthermore, S100A4 released from mtPC3 cells stimulated osteoclast development via the cell surface receptor RAGE. Down-regulation or neutralization of S100A4 in the CM of mtPC3 cells attenuated cancer-induced osteoclastogenesis. Conclusion Altogether, our results suggest that intracellular S100A4 promotes cell proliferation and EMT characteristics in tumor cells, and that secreted S100A4 activates osteoclastogenesis, contributing to osteolytic bone metastasis. Thus, S100A4 upregulation in cancer cells highly metastatic to bone might be a key element in regulating bone metastasis.This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government MSIT (NRF-2020R1A2C2010082 and NRF-2018R1A5A2024418) to H.-H. Kim and by the National Research Foundation of Korea grant (NRF-2019R1A2C4070083) to H.J. Kim. The funding body has no role in the design of the study; collection, analysis, and interpretation of data; and in writing the manuscript
    corecore