13 research outputs found

    Probabilistic Random Walk Models for Comparative Network Analysis

    Get PDF
    Graph-based systems and data analysis methods have become critical tools in many fields as they can provide an intuitive way of representing and analyzing interactions between variables. Due to the advances in measurement techniques, a massive amount of labeled data that can be represented as nodes on a graph (or network) have been archived in databases. Additionally, novel data without label information have been gradually generated and archived. Labeling and identifying characteristics of novel data is an important first step in utilizing the valuable data in an effective and meaningful way. Comparative network analysis is an effective computational means to identify and predict the properties of the unlabeled data by comparing the similarities and differences between well-studied and less-studied networks. Comparative network analysis aims to identify the matching nodes and conserved subnetworks across multiple networks to enable a prediction of the properties of the nodes in the less-studied networks based on the properties of the matching nodes in the well-studied networks (i.e., transferring knowledge between networks). One of the fundamental and important questions in comparative network analysis is how to accurately estimate node-to-node correspondence as it can be a critical clue in analyzing the similarities and differences between networks. Node correspondence is a comprehensive similarity that integrates various types of similarity measurements in a balanced manner. However, there are several challenges in accurately estimating the node correspondence for large-scale networks. First, the scale of the networks is a critical issue. As networks generally include a large number of nodes, we have to examine an extremely large space and it can pose a computational challenge due to the combinatorial nature of the problem. Furthermore, although there are matching nodes and conserved subnetworks in different networks, structural variations such as node insertions and deletions make it difficult to integrate a topological similarity. In this dissertation, novel probabilistic random walk models are proposed to accurately estimate node-to-node correspondence between networks. First, we propose a context-sensitive random walk (CSRW) model. In the CSRW model, the random walker analyzes the context of the current position of the random walker and it can switch the random movement to either a simultaneous walk on both networks or an individual walk on one of the networks. The context-sensitive nature of the random walker enables the method to effectively integrate different types of similarities by dealing with structural variations. Second, we propose the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) model. In the CUFID model, we construct an integrated network by inserting pseudo edges between potential matching nodes in different networks. Then, we design the random walk protocol to transit more frequently between potential matching nodes as their node similarity increases and they have more matching neighboring nodes. We apply the proposed random walk models to comparative network analysis problems: global network alignment and network querying. Through extensive performance evaluations, we demonstrate that the proposed random walk models can accurately estimate node correspondence and these can lead to improved and reliable network comparison results

    Accurate multiple network alignment through context-sensitive random walk

    Get PDF
    BACKGROUND: Comparative network analysis can provide an effective means of analyzing large-scale biological networks and gaining novel insights into their structure and organization. Global network alignment aims to predict the best overall mapping between a given set of biological networks, thereby identifying important similarities as well as differences among the networks. It has been shown that network alignment methods can be used to detect pathways or network modules that are conserved across different networks. Until now, a number of network alignment algorithms have been proposed based on different formulations and approaches, many of them focusing on pairwise alignment. RESULTS: In this work, we propose a novel multiple network alignment algorithm based on a context-sensitive random walk model. The random walker employed in the proposed algorithm switches between two different modes, namely, an individual walk on a single network and a simultaneous walk on two networks. The switching decision is made in a context-sensitive manner by examining the current neighborhood, which is effective for quantitatively estimating the degree of correspondence between nodes that belong to different networks, in a manner that sensibly integrates node similarity and topological similarity. The resulting node correspondence scores are then used to predict the maximum expected accuracy (MEA) alignment of the given networks. CONCLUSIONS: Performance evaluation based on synthetic networks as well as real protein-protein interaction networks shows that the proposed algorithm can construct more accurate multiple network alignments compared to other leading methods

    Effective comparative analysis of protein-protein interaction networks by measuring the steady-state network flow using a Markov model

    Get PDF
    BACKGROUND: Comparative analysis of protein-protein interaction (PPI) networks provides an effective means of detecting conserved functional network modules across different species. Such modules typically consist of orthologous proteins with conserved interactions, which can be exploited to computationally predict the modules through network comparison. RESULTS: In this work, we propose a novel probabilistic framework for comparing PPI networks and effectively predicting the correspondence between proteins, represented as network nodes, that belong to conserved functional modules across the given PPI networks. The basic idea is to estimate the steady-state network flow between nodes that belong to different PPI networks based on a Markov random walk model. The random walker is designed to make random moves to adjacent nodes within a PPI network as well as cross-network moves between potential orthologous nodes with high sequence similarity. Based on this Markov random walk model, we estimate the steady-state network flow – or the long-term relative frequency of the transitions that the random walker makes – between nodes in different PPI networks, which can be used as a probabilistic score measuring their potential correspondence. Subsequently, the estimated scores can be used for detecting orthologous proteins in conserved functional modules through network alignment. CONCLUSIONS: Through evaluations based on multiple real PPI networks, we demonstrate that the proposed scheme leads to improved alignment results that are biologically more meaningful at reduced computational cost, outperforming the current state-of-the-art algorithms. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/CUFID

    GRACE: Graph autoencoder based single-cell clustering through ensemble similarity learning.

    No full text
    Recent advances in single-cell sequencing techniques have enabled gene expression profiling of individual cells in tissue samples so that it can accelerate biomedical research to develop novel therapeutic methods and effective drugs for complex disease. The typical first step in the downstream analysis pipeline is classifying cell types through accurate single-cell clustering algorithms. Here, we describe a novel single-cell clustering algorithm, called GRACE (GRaph Autoencoder based single-cell Clustering through Ensemble similarity larning), that can yield highly consistent groups of cells. We construct the cell-to-cell similarity network through the ensemble similarity learning framework, and employ a low-dimensional vector representation for each cell through a graph autoencoder. Through performance assessments using real-world single-cell sequencing datasets, we show that the proposed method can yield accurate single-cell clustering results by achieving higher assessment metric scores

    CUFID-query: accurate network querying through random walk based network flow estimation

    No full text
    Abstract Background Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. Results In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Conclusions Through extensive performance evaluation based on biological networks with known functional modules, we show that CUFID-query outperforms the existing state-of-the-art algorithms in terms of prediction accuracy and biological significance of the predictions

    NAPAbench 2: A network synthesis algorithm for generating realistic protein-protein interaction (PPI) network families.

    No full text
    Comparative network analysis provides effective computational means for gaining novel insights into the structural and functional compositions of biological networks. In recent years, various methods have been developed for biological network alignment, whose main goal is to identify important similarities and critical differences between networks in terms of their topology and composition. A major impediment to advancing network alignment techniques has been the lack of gold-standard benchmarks that can be used for accurate and comprehensive performance assessment of such algorithms. The original NAPAbench (network alignment performance assessment benchmark) was developed to address this problem, and it has been widely utilized by many researchers for the development, evaluation, and comparison of novel network alignment techniques. In this work, we introduce NAPAbench 2-a major update of the original NAPAbench that was introduced in 2012. NAPAbench 2 includes a completely redesigned network synthesis algorithm that can generate protein-protein interaction (PPI) network families whose characteristics closely match those of the latest real PPI networks. Furthermore, the network synthesis algorithm comes with an intuitive GUI that allows users to easily generate PPI network families with an arbitrary number of networks of any size, according to a flexible user-defined phylogeny. In addition, NAPAbench 2 provides updated benchmark datasets-created using the redesigned network synthesis algorithm-which can be used for comprehensive performance assessment of network alignment algorithms and their scalability

    In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform

    No full text
    A novel active surface-enhanced Raman scattering (SERS) platform for dynamic on-demand generation of SERS active sites based on optoelectrofluidics is presented in this paper. When a laser source is projected into a sample solution containing metal nanoparticles in an optoelectrofluidic device and an alternating current (ac) electric field is applied, the metal nanoparticles are spontaneously concentrated and assembled within the laser spot, form SERS-active sites, and enhance the Raman signal significantly, allowing dynamic and more sensitive SERS detection. In this simple platform, in which a glass slide-like optoelectrofluidic device is integrated into a conventional SERS detection system, both dynamic concentration of metal nanoparticles and in situ detection of SERS signal are simultaneously possible with only a single laser source. This optoelectrofluidic SERS spectroscopy allows on-demand generation of 'hot spots' at specific regions of interest, and highly sensitive, reliable, and stable SERS measurements of the target molecules in a tiny volume (similar to 500 nL) of liquid sample without any fluidic components and complicated systems.close171
    corecore