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Abstract

Background: Comparative analysis of protein-protein interaction (PPI) networks provides an effective means of
detecting conserved functional network modules across different species. Such modules typically consist of
orthologous proteins with conserved interactions, which can be exploited to computationally predict the modules
through network comparison.

Results: In this work, we propose a novel probabilistic framework for comparing PPI networks and effectively
predicting the correspondence between proteins, represented as network nodes, that belong to conserved
functional modules across the given PPI networks. The basic idea is to estimate the steady-state network flow
between nodes that belong to different PPI networks based on a Markov random walk model. The random walker is
designed to make randommoves to adjacent nodes within a PPI network as well as cross-network moves between
potential orthologous nodes with high sequence similarity. Based on this Markov random walk model, we estimate
the steady-state network flow – or the long-term relative frequency of the transitions that the random walker makes –
between nodes in different PPI networks, which can be used as a probabilistic score measuring their potential
correspondence. Subsequently, the estimated scores can be used for detecting orthologous proteins in conserved
functional modules through network alignment.

Conclusions: Through evaluations based on multiple real PPI networks, we demonstrate that the proposed scheme
leads to improved alignment results that are biologically more meaningful at reduced computational cost,
outperforming the current state-of-the-art algorithms. The source code and datasets can be downloaded from http://
www.ece.tamu.edu/~bjyoon/CUFID.

Background
Complex biological mechanisms such as signaling path-
ways and metabolic processes are governed and coordi-
nated by numerous protein-protein interactions (PPIs).
In addition to gene expression profiles, PPIs provide
invaluable information that can be exploited to predict
novel functional modules that perform critical biological
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functions. Thanks to recent advances in high-throughput
protein interaction measurement techniques, PPI net-
works for different species have been archived in public
databases, where the coverage and quality of these net-
works continue to improve over time. To translate these
protein interaction data into useful biological knowl-
edge – for example, that of the functional organization of
cells and the detailedmechanisms of various cellular func-
tions – we need effective means for analyzing the available
PPI networks to accurately annotate the protein functions
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and to identify modules of proteins that may be potentially
involved in crucial biological processes conserved across
species.
Although one can study functions of proteins in PPI

networks through biological experiments, it takes a large
amount of valuable resources including labor, experimen-
tal cost, and time. As we have increasing evidence that
various functional modules are conserved across different
species, in which orthologous proteins and their interac-
tions are preserved, comparative network analysis based
on computational approaches would be one reasonable
alternative that can save the cost and time of expensive
biological experiments [1, 2]. Through comparative net-
work analysis techniques such as network querying and
network alignment [3], we can identify conserved func-
tional modules as well as functionally similar proteins. By
identifying corresponding protein nodes across networks,
functional annotations of known proteins in well-studied
species could be transferred to matching proteins in the
PPI networks of less-studied species, which provides an
efficient way of predicting potential functions of unknown
proteins.
To obtain biologically meaningful PPI network align-

ment results, we should take both the molecular-level
similarity between proteins as well as the similarity of
their interaction patterns into account. The pairwise
molecular-level similarity can be measured by compar-
ing the sequence (or structure) of the proteins. As
shown in [1, 2], interactions between orthologous pro-
teins are often well-preserved in functional modules that
are commonly found in multiple species. As a result,
it would be desirable to consider the topological sim-
ilarity between PPI networks, which arises from such
conserved PPIs, for accruately comparing and aligning
networks. Hence, an essential first step to construct a
reliable network alignment is to accurately estimate the
universal similarity measure that reflects the node corre-
spondence across networks by integrating the two types
of similarities: pairwise node similarity and topologi-
cal similarity. However, several factors make the esti-
mation of the node correspondence practically difficult.
First, when comparing PPI networks of different species,
not all protein nodes are present in all PPI networks,
hence the networks are bound to have a large num-
ber of inserted/deleted nodes (see Fig. 1). Second, the
interaction patterns may significantly vary in different
PPI networks, where orthologous proteins in different
species may interact with considerably different sets of
proteins in the respective networks. As a result, the PPI
networks may have a large number of inserted/deleted
edges. Third, most nodes may have numerous poten-
tial matching nodes in other networks. All these factors
make accurate prediction of node correspondence quite
challenging.

Fig. 1 Illustration of a pairwise network alignment. The blue colored
node in network X is deleted in network Y, and the pink colored node
in network Y is inserted. Note that an inserted node in one network
can be viewed as a deleted node in the other network

Several network alignment algorithms have been pro-
posed to identify and predict orthologous protein pairs
and conserved functional modules in different networks.
The pioneering network alignment algorithms, Path-
BLAST [4] andNetworkBLAST [1, 5], focus on identifying
highly conserved local complexes. However, PathBLAST
can only search for linear paths, and NetworkBLAST
constructs local alignments where one protein can have
multiple matching partners, which may yield ambiguous
alignments. IsoRank [6] estimates the node correspon-
dence using amodification of the widely-known PageRank
algorithm [7], where the basic idea is that two proteins
have a high probability to be aligned if their neighbor-
ing proteins are also matched well. IsoRankN [8] extends
IsoRank to align multiple PPI networks by adopting
PageRank-Nibble [9], a spectral clustering method. Iso-
Rank and IsoRankN are relatively time consuming and
require a huge amount of memory as the size of the net-
work increases. SMETANA [10] adopts a semi-Markov
random walk (SMRW) model to estimate the node cor-
respondence scores. These scores are updated through
the intra-network and cross-network probabilistic con-
sistency transformations, which are subsequently used to
greedily build the network alignment. SMETANA-CSRW
[11] estimates the node correspondence scores using a
context-sensitive randomwalk (CSRW)model [12], which
integrates the node similarity and the topological similar-
ity between networks. Then, it constructs the final align-
ment based on a greedy approach. Although SMETANA-
CSRW has slightly higher computational complexity as
the network size increases, the utilization of the CSRW
model has been shown to improve the accuracy of the
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alignment results. PINALOG [13] detects dense subnet-
works as communities. Then, it constructs the initial
community mapping and extends the alignment by map-
ping the neighboring nodes of the core proteins. HubAlign
[14] first assigns weights to the nodes and edges in the
PPI networks based on their topological importance (i.e.,
likelihood to be a hub), and then calculates the align-
ment score for every pair of proteins based on the global
topological property and sequence information. Then, the
algorithm constructs a global network alignment using
a greedy seed-and-extension approach. Both PINALOG
andHubAlign aremore dependent on the topological sim-
ilarity between networks than node similarity for obtain-
ing the network alignment results, which may degrade
the alignment accuracy when handling incomplete PPI
networks or networks that may contain a relatively large
number of false positive interactions.
In this paper, we propose a novel network alignment

algorithm, called CUFID-align (Comparative network
analysis Using the steady-state network Flow to IDentify
orthologous proteins). The algorithm estimates the node
correspondence by measuring the steady-state network
flow of a random walk model over an integrated network
of the given PPI networks. To accurately estimate the node
correspondence based on the steady-state network flow,
in a way that effectively captures the biological signifi-
cance, we design the Markov random walk model such
that the relative frequency that the random walker makes
transitions between a pair of nodes in different PPI net-
works is proportional to the pairwise node similarity and
the topological similarity between the surrounding net-
work regions. The proposed scheme effectively captures
the functional correspondence between nodes across dif-
ferent networks and the estimated node correspondence
scores can lead to accurate network alignment results,
as will be demonstrated through performance assessment
based on real PPI networks.

Methods
Problem formulation
Suppose that we have a pair of PPI networks with the
graph representations GX = (U ,D) and GY = (V , E), in
which nodes represent proteins in each PPI network (i.e.,
ui ∈ U or vj ∈ V), and edges (dij ∈ D or eij ∈ E) indicate
that the corresponding protein ui (or vi) binds with the
protein uj (or vj). The edge weights in the PPI networks
can indicate the strength or confidence of the interactions
between the proteins. Given a pair of nodes across the
PPI networks, we assume that the pairwise node similar-
ity score s

(
ui, vj

)
, ui ∈ U and vj ∈ V can be computed,

for example, based on the sequence similarity between
the proteins. In this study, we utilized BLAST bit scores
between proteins as the pairwise node similarity scores.
However, other types of similarity measurements (or their

combinations) could be also used as the pairwise node
similarity score in case such measurements can be easily
obtained.
Given a pair of PPI networks GX and GY , our objective

is to derive the optimal one-to-one mapping A∗ between
nodes in different PPI networks. One possible criterion
that could be used to find such a mapping is the maximum
expected accuracy (MEA) criterion, which aims to max-
imize the expected number of correctly mapped nodes.
Provided that we can derive a pairwise node alignment
probability Pr

[
ui ∼ vj|GX ,GY

]
, ui ∈ U and vj ∈ V , the

optimal one-to-one mapping can be found by:

A∗ = argmax
A

∑

∀(ui∼vj)∈A
Pr

[
ui ∼ vj|GX ,GY

]
(1)

according to the MEA criterion. This MEA approach has
been widely used by many multiple sequence alignment
algorithms [15–19] and it has been shown to be useful for
network alignment [10, 11] and network querying [20] as
well.

Motivation and overview of the proposedmethod
Based on the above problem setting, to construct a confi-
dent network alignment, it is crucial to accurately estimate
the pairwise node alignment probabilities. To obtain bio-
logically meaningful alignment results, it is necessary that
the pairwise node alignment probability is proportional to
both the pairwise node similarity (i.e., sequence similar-
ity) and the topological similarity between the subnetwork
regions surrounding the nodes in the respective networks.
This is based on the observation that orthologous proteins
typically have a high level of compositional similarity and
often display similar interaction patterns to their neigh-
boring nodes [1, 2]. To accurately estimate the pairwise
node alignment probability by effectively integrating these
two different types of similarities, we propose to utilize the
concept of steady-state network flow (i.e., the amount of
‘water’ that flows through a given channel in the network).
Similar concepts have been previously adopted in various
engineering applications to find the solutions to similar
assignment problems. For example, in digital communica-
tion systems, the water-filling algorithm [21] is utilized to
compute the optimal allocation of resources. Conceptu-
ally, it pours ‘water’ into an OFDM (orthogonal frequency
division multiplexing) channel, and the ‘water level’ in the
OFDM channel is utilized to find the optimal solution of
the transmit power for each subcarrier. In digital image
processing, the so-called watershed method [22] is used
to find edges or contours of objects in the given image.
The watershed method assumes that ‘water’ flows along
the image gradient (e.g., intensity differences) and even-
tually reaches the local minima so that the ‘water level’
in the image provides the solution for the desired image
segmentation.
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In the proposed method, we measure the steady-state
network flow in an integrated network that is obtained
by combining the PPI network pair to be aligned. More
specifically, edges are inserted between nodes in differ-
ent networks that have positive pairwise node similarity,
and the pairwise node similarity score is assigned as the
edge weight (see Fig. 2). Suppose we pour ‘water’ on the
integrated network and that the amount of water flow is
proportional to the edge weight. If a given pair of nodes
in different PPI networks have higher pairwise node sim-
ilarity and if their neighboring nodes also have higher
pairwise node similarity, there would be a larger water
flow between the pair of nodes in the long run. However,
if the nodes have a similar topological structure (i.e., in
terms of the number of interacting nodes in the respective
networks) but if their neighboring nodes are not similar,
there will be relatively small water flow between the pair
of nodes (see Fig. 3). As a result, the water flow between
nodes across different PPI networks provides an intuitive
way of measuring the overall similarity of the nodes – or
functional correspondence between the proteins. As will
be shown later, the resulting node correspondence score
obtained based on the concept of water flow in the inte-
grated network can serve as an effective building block
for constructing an accurate and biologically meaningful
network alignment.

Estimating the node correspondence through a Markov
randomwalk model
In order to effectively estimate the node correspondence
by integrating both the pairwise node similarity and topo-
logical similarity using a Markov random walk model, we
first construct the integrated networkG = (V ,E) by com-
bining GX and GY . Nodes of the integrated network G are
the union of the nodes of GX and GY (i.e.,V = {U ,V}), and
edges are the union of the edges of GX , GY , and additional
weighted edges F , where F = {

s
(
ui, vj

) |ui ∈ U , vj ∈ V
}

Fig. 3 Illustration of how node correspondence is measured based on
the steady-state network flow. Straight lines represent protein-protein
interactions, and dotted lines indicate pairwise node similarity. In this
example, there is a larger steady-state network flow between the
node pair (a, b) than the node pair (a, d) because the node pair (a, b)
has higher pairwise node similarity and as the nodes have similar
interacting nodes in the respective networks. In contrast, although
the node pair (a, d) has positive pairwise node similarity, the
neighboring nodes in the respective networks are not similar, which
leads to a smaller steady-state network flow between the nodes (a, d)
compared to the flow between (a, b)

(i.e., E = {D, E ,F}). On this integrated network G, we
allow the random walker to randomly move from the cur-
rent node to any of its neighboring nodes at each time
step. We define two different types of random moves
based on their starting and ending points. First, if the ran-
dom walker moves from a node in U to a node in U (or
from a node in V to a node in V), we define it as an intra-
network random move, as the random walk takes place
in the same PPI network. Second, if the random walker

Fig. 2 Illustration for constructing the integrated network from a network pair. Dotted lines in the left figure indicate the pairwise node similarity, in
which the thickness of each line is proportional to the pairwise node similarity. To construct the integrated network, we insert an edge between
each pair of nodes across different networks if they have positive pairwise node similarity
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moves from a node in U to a node in V (or from a node in
V to a node in U ), we refer to this as a cross-network ran-
dom move. The intra-network random move mainly aims
to capture the topological similarity between the two PPI
networks while the cross-network random move aims to
incorporate the pairwise node similarity between nodes
that originally belong to different PPI networks.
The transition probabilities of the resulting random

walker are determined as follows. Suppose the two net-
works GX = (U ,D) and GY = (V , E) have weighted edges,
where the respective adjacency matrices are given by:

AX
[
i, j

] =
{
dij,

(
ui,uj

) ∈ D
0, otherwise , (2a)

AY
[
i, j

] =
{
eij,

(
vi, vj

) ∈ E
0, otherwise . (2b)

First of all, to compute the transition probabilities of
the intra-network random moves, we transform the edge
weighted adjacency matrix into a legitimate stochastic
matrix by normalizing each row. That is, the transition
probability of the random walker is proportional to the
weight of the edge that connects the node at the current
position of the random walker and the neighboring node
(in the same PPI network) to which it wants to move.
The resulting transition probability of any intra-network
random move is given by

Pk
[
i, j

] = 1
∑

∀j
Ak

[
i, j

] · Ak
[
i, j

]
, k = X,Y . (3)

Eq. (3) can be rewritten in a simple matrix form, which is
given by

PX = D−1
X · AX and PY = D−1

Y · AY , (4)

whereDX is a |U | × |U | dimensional diagonal matrix such
that DX [i, i] = ∑

∀j
AX

[
i, j

]
, and DY is a |V| × |V| dimen-

sional diagonal matrix such that DY [i, i] = ∑

∀j
AY

[
i, j

]
.

Next, suppose that the transition probability of the
cross-network random move between two nodes in dif-
ferent networks is proportional to their pairwise node
similarity score. That is, from the current position of the
randomwalker in a given PPI network, the randomwalker
is more likely to move to a node in the other PPI network
with higher pairwise node similarity. This will increase
the ‘network flow’ between nodes that have higher node
similarity. The transition probability for a cross-network
random move from a node ui in GX to a node vj in GY is
then given by:

Pr
[
vj|ui

] = PX→Y
[
i, j

] = 1
∑

∀vj
s
[
ui, vj

] · s [ui, vj
]
. (5)

In a matrix form, Eq. (5) can be written as:

PX→Y = D−1
S · S, (6)

where S is a |U | × |V| dimensional matrix for the pairwise
node similarity score, and DS is a |U | × |U | dimensional
diagonal matrix such that DS [i, i] = ∑

∀j
s
[
i, j

]
. Simi-

larly, the transition probability of a cross-network random
move from a node vi in GY to a node uj in GX is given by:

Pr
[
uj|vi

] = PY→X
[
i, j

] = 1
∑

∀uj
sT

[
vi,uj

] ·sT [
vi,uj

]
, (7)

where sT
[
vi,uj

]
is a

[
vi,uj

]
-th element of the transposed

matrix of S. Equation (7) can be written in a matrix form
as follows:

PY→X = ST · D−1
ST , (8)

where ST is a |V|×|U | dimensional matrix for the pairwise
node similarity score, and DST is a |U | × |U | dimensional
diagonal matrix such that DST [i, i] = ∑

∀j
sT

[
i, j

]
. In fact,

the transition probability matrices PX→Y and PY→X are
normalized pairwise node similarity score matrices in the
row-wise and column-wise manner.
Finally, we can get the (|U | + |V|) × (|U | + |V|) dimen-

sional overall transition probability matrix for the Markov
random walker over the integrated network G, given by

P =
[
PX PX→Y
PY→X PY

]
. (9)

Based on the proposed random walk protocol, the ran-
dom walker transits more frequently between the pair
of nodes

(
ui, vj

)
if the node ui and the node vj have a

higher pairwise node similarity and also if their neighbor-
ing nodes also have higher pairwise node similarity (i.e.,
higher topological similarity). So, as a result, the random
walker will spend more time on an edge that connects a
pair of nodes

(
ui, vj

)
, ui ∈ U and vj ∈ V as their overall

similarity (or node correspondence) increases. Hence, we
can effectively estimate the pairwise node alignment prob-
ability – which should be proportional to the desired node
correspondence – by measuring the steady-state network
flow through each edge

(
ui, vj

)
, ui ∈ U and vj ∈ V .

To compute the steady-state network flow, we first com-
pute the steady-state probability π (x) of the random
walker for every node x ∈ U ∪ V in the integrated net-
work. This is equivalent to the long-run proportion of
time that the randomwalker spends at a given node x. The
steady-state probability distribution is equivalent to the
eigenvector of the transition probability matrix P that cor-
responds to unit eigenvalue. This eigenvector, hence the
steady-state probability, can be easily obtained through
the power method, as the transition probability matrix
P will be generally sparse for real PPI networks [10, 11].
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The steady-state probability π (x) can be viewed as the
amount of ‘water’ at the node x in the long-run, and since
the amount of the water flow is proportional to the edge
weight, we can obtain the steady-state network flow along
the edge

(
ui, vj

)
as follows (see Fig. 4):

c
(
ui, vj

) = π (ui) · Pr [
vj|ui

] + π
(
vj

) · Pr [
ui|vj

]

= π (ui) · s
(
ui, vj

)

∑

∀vj
s
(
ui, vj

) + π
(
vj

) · s
(
ui, vj

)

∑

∀ui
s
(
ui, vj

) .

(10)

This equation can be rewritten in amatrix form as follows:

C = πX · PX→Y + PT
Y→X · πY , (11)

where C is a |U | × |V| dimensional matrix for the steady-
state network flow (i.e., pairwise node correspondence
scores), πX is a |U | × |U | dimensional diagonal matrix
such that πX [i, i] = π (ui), ui ∈ U , and πY is a |V| × |V|
dimensional diagonal matrix such that πY

[
j, j

] = π
(
vj

)
,

vj ∈ V .
As in SMETANA [10] and SMETANA-CSRW [11], we

utilize the following probabilistic consistency transforma-
tion (PCT) given by:

C̃ = α · C + (1 − α) · PX · C · PT
Y , (12)

to update the estimated node correspondence scores. The
above PCT assumes that, given a pair of nodes, if their
neighboring nodes have high correspondence, the node
pair has increased chance to be aligned. That is, updat-
ing the estimated node correspondence score by utilizing
the neighbor’s node correspondence could increase the

Fig. 4 Illustration of the steady-state network flow. Note that the red
colored arrows indicate the intra-network randommoves, while the
blue colored arrows represent the cross-network randommoves

overall accuracy of the node correspondence score. How-
ever, the PCT also has the potential risk of creating or
increasing false positive node correspondence. That is,
some node pairs with zero (or insignificant) correspon-
dence scores can have positive (or increased) node corre-
spondence scores after performing the PCT if they have
neighboring nodes with positive correspondence scores,
because PCT propagates the node correspondence scores
to neighboring nodes. Therefore, to suppress false posi-
tive node alignments, we only keep the transformed scores
that are larger than the 90 percentile (= β). Furthermore,
we also keep the original scores c

[
i, j

]
even if they are

smaller than the threshold β . That is,

c̄
[
i, j

] = g
(
c̃
[
i, j

]) =
{
c̃
[
i, j

]
, if c̃

[
i, j

] ≥ βor c
[
i, j

]
> 0

0, otherwise .

(13)

After transforming and removing node correspondence
scores lower than a specific threshold using Eq. (13), we
obtain the final node correspondence scores C̄, which will
be used to construct the network alignment.

Algorithm 1: CUFID-align
Data: A pair of PPI networks (GX and GY ) and

pairwise node similarity scores
Result: One-to-one alignment A between proteins in

different PPI networks
begin

1 A = ∅ // Empty alignment
2 Construct the transition probability matrix using

Eq. (9)
3 Compute the node correspondence C using

Eq. (11)
4 Compute the transformed node correspondence C̄

using Eqs. (12) and (13)
5 Construct the maximum weighted bipartite

matching between GX and GY based on C̄
end

Constructing the pairwise network alignment
After computing the transformed node correspondence
score C̄, we use the scores to construct the network
alignment based on the MEA criterion, based on the
assumption that the pairwise node alignment probabil-
ity is proportional to the obtained node correspondence
score:

Pr
[
ui ∼ vj|GX ,GY

] ∝ c̄
(
ui, vj

)
. (14)

Finally, to find the optimal solution of Eq. (1) based on the
derived pairwise node alignment probability, we construct
the maximum weighted bipartite matching (MWBM)
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between GX and GY , using an efficient implementa-
tion of the MWBM algorithm included in the GAIMC
library [23].

Results and discussion
Datasets and experimental set-up
We assessed the performance of CUFID-align based on
the IsoBase dataset [24], which includes PPI networks of
five different species: H. sapiens (human), M. musculus
(mouse), D. melanogaster (fly), C. elegans (worm), and
S. cerevisiae (yeast). PPI networks in the IsoBase dataset
were constructed by integrating five different databases:
BioGRID [25], DIP [26], HPRD [27], MINT [28], and
IntAct [29]. In IsoBase, the H. sapiens network has 22,369
proteins and 43,757 interactions; the M. musculus net-
work has 24,855 proteins and 452 interactions; the D.
melanogaster network has 14,098 proteins and 26,726
interactions; the C. elegans network has 19,756 proteins
and 5,853 interactions; and the S. cerevisiae network has
6,659 proteins and 38,109 interactions.
We assessed the quality of the predicted network align-

ment based on the following metrics: correct nodes
(CN), specificity (SPE), gene ontology consistency (GOC)
scores, conserved interactions (CI), conserved ortholo-
gous interactions (COI), and computation time. Note
that CN, SPE, and GOC scores assess the biological sig-
nificance of the alignment, and CI and COI assess the
topological quality of the alignment. If the aligned nodes
have the same functional annotation based on the KEGG
Orthology (KO) group annotations [30], we considered
the node alignment to be correct. CN counts the total
number of correctly aligned nodes in a given network
alignment. SPE is the relative ratio of the total number of
correctly aligned node pairs to the total number of aligned
node pairs.
To further assess the functional consistency of a given

network alignment A, we used GOC scores, which can be
computed by

GOC (A) =
∑

∀(ui∼vj)∈A
goc

(
ui, vj

)

=
∑

∀(ui∼vj)∈A

∣∣GO (ui) ∩ GO
(
vj

)∣∣
∣
∣GO (ui) ∪ GO

(
vj

)∣∣ ,
(15)

where GO (x) denotes the set of all GO terms assigned
to the protein x. To compute the GOC scores, we down-
loaded the latest version of GO annotations for each
species from GO consortium [31] (Feb. 10, 2016 ver-
sion). We only used GO terms that have experimental
evidence (i.e., those that include the codes ‘EXP’, ‘IDA’,
‘IPI’, ‘IMP’, ‘IGI’, and ‘IEP’). Additionally, similar to [32], we
removed every GO term whose information content (IC)

was smaller than 2, in order to compute GOC scores based
on more informative GO annotations. IC is defined as

IC (c) = − log2
|c|

|root (c)| , (16)

where |c| is the number of proteins having the particular
GO term c, and |root (c)| is the total number of proteins
under the root GO term of the particular GO term c,
where three root GO terms are molecular function (MF,
GO:0003674), biological process (BP, GO:0008150), and
cellular component (CC, GO:0005575). Note that if at
least one protein in the aligned protein pair does not have
a functional annotation such as KO group annotations or
GO terms, the aligned protein pair was removed before
computing the performance metrics CN, SPE, and GOC
scores.
To assess the topological quality of the constructed net-

work alignment, we counted the number of conserved
interactions (CI) as follows:

∑

∀(ui,uj)∈D
1

[(
ui,uj

) ∈ D
] · 1 [

(f (ui) , f
(
vj

)
) ∈ E

]
, (17)

where 1 [·] is the indicator function whose value is 1 if the
statement in the bracket is true and 0 otherwise, and f (x)
denotes the corresponding protein aligned to the protein
x. However, the conserved interactions may not be nec-
essarily be significant from a biological perspective if the
aligned proteins connected by the conserved interactions
are not orthologous. Considering the large size of typi-
cal PPI networks, simply aiming at a network alignment
that maximizes the number of conserved interactions may
risk overfitting the network topology without clear bio-
logical significance, which can be especially problematic
when PPI networks are incomplete and noisy. For this
reason, in order to assess the biological significance of
the topological mapping in a given network alignment,
we counted the number of conserved orthologous inter-
actions, which is the number of conserved interactions
between orthologous protein pairs (COI). This is given by:

∑

∀(ui,uj)∈D
h

(
ui,uj

)·1 [(
ui,uj

) ∈ D
]·1 [

(f (ui) , f
(
uj

)
) ∈ E

]
,

(18)

where

h
(
ui,uj

) =
{
1, if

[
goc

(
ui, f (ui)

) · goc (
uj, f

(
uj

))]
> 0

0, otherwise .

(19)

We compared the performance of CUFID-align against
a number of state-of-the-art alignment methods: Iso-
Rank [6], SMETANA [10], SMETANA-CSRW [11], PINA-
LOG [13], and HubAlign [14]. Additionally, to verify the
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effectiveness of the network-based approach over the
conventional approach that uses sequence similarity
alone, we compared the various network-based methods
and with a method that finds the best mapping between
networks solely based on the sequence similarity between
the proteins. More specifically, given a network pair, we
tried to predict the network alignment by using maxi-
mum weighted bipartite matching based on BLAST bit
scores. Since both SMETANA and SMETANA-CSRW
yield many-to-many mappings by default, we used the
parameter nmax = 1 to obtain one-to-one mappings.
Other than this, the default parameters were used in our
experiments (i.e., α = 0.9 and β = 0.8). For HubAlign,
we used the default parameters (i.e., λ = 0.1, d = 10,
and α = 0.7). For IsoRank, we set the parameter α = 0.6
as recommend in the original paper. For CUFID-align, we
set the parameter α = 0.9 and β = 90 percentile of
the transformed correspondence score. We performed all
experiments on a desktop computer equipped with a 3.2
GHz Intel i5 quad-core processor and 8 GB memory.

Performance assessment based on the IsoBase dataset
We assessed the performance of CUFID-align by predict-
ing the alignment for every pair of PPI networks in the
IsoBase dataset. CN and SPE are summarized in Table 1.

As we can see, CUFID-align and BLAST-MWBM achieve
higher CN in all test cases. This means that CUFID-
align and BLAST-MWBM can generally align a larger
number of proteins that have the same functional anno-
tations (i.e., KEGG orthologous group annotations) than
the other state-of-the-art network alignment methods.
Interestingly, the sequence-similarity-based approach can
identify a larger number of correct nodes (CN) than most
of the other network-based approaches. However, as will
be shown later, it is clearly biased and the method per-
forms very poorly in terms of the topological quality of
the predicted network alignment. CN for PINALOG and
HubAlign may depend on the average degrees of the PPI
networks (i.e., |E | /|V| ). That is, if one of the PPI net-
works has amuch lower average degree, the overall quality
of the network alignment may be significantly degraded.
Note that human, yeast, and fly PPI networks have rel-
atively higher average degrees, and mouse and worm
PPI networks have relatively lower average degrees. Since
PINALOG and HubAlign adopt a seed-and-extension
approach, the search space for aligning addition protein
pairs is restricted to the neighboring nodes of the seed
network. Hence, it would be possible that PINALOG
and HubAlign may align proteins even though there is
no orthologous protein pair in the search space (i.e., the

Table 1 Pairwise alignment results for the IsoBase dataset. Protein functionality is determined based on the KEGG Orthology (KO)
group annotations

Yeast – Fly Yeast – Worm Yeast – Human Yeast – Mouse Fly – Worm

CN a SPE b CN SPE CN SPE CN SPE CN SPE

CUFID-align 1,708 0.748 1,548 0.834 1,330 0.736 1,304 0.794 2,616 0.873

SMETANA-CSRW 1,610 0.757 1,426 0.850 1,224 0.733 1,192 0.802 2,444 0.870

SMETANA 1,530 0.733 1,422 0.843 1,134 0.710 1,182 0.782 2,338 0.852

PINALOG 1,368 0.722 640 0.737 1,100 0.682 76 0.400 672 0.689

HubAlign 1,326 0.681 98 0.170 1,082 0.633 42 0.231 102 0.201

IsoRank 1,414 0.712 650 0.703 1,142 0.702 76 0.369 918 0.818

BLAST-MWBMc 1,712 0.776 1,544 0.836 1,334 0.768 1,280 0.792 2,680 0.885

Fly – Human Fly – Mouse Worm – Mouse Worm – Human Human – Mouse

CN SPE CN SPE CN SPE CN SPE CN SPE

CUFID-align 2,528 0.754 2,364 0.788 1,818 0.807 1,858 0.791 5,178 0.983

SMETANA-CSRW 2,358 0.763 2,146 0.768 1,610 0.811 1,722 0.803 5,002 0.978

SMETANA 2,096 0.706 2,112 0.764 1,578 0.803 1,570 0.780 4,876 0.972

PINALOG 1,172 0.604 118 0.567 66 0.458 482 0.677 282 0.972

HubAlign 354 0.219 34 0.230 24 0.188 32 0.063 144 0.667

IsoRank 1,736 0.725 146 0.566 72 0.456 644 0.793 286 0.979

BLAST-MWBM 2,580 0.766 2,374 0.781 1,824 0.808 1,884 0.794 5,140 0.982

aCN: ccorrect nodes
bSPE: specificity
cBLAST-MWBM: maximum weighted bipartite matching of PPI networks only using the BLAST bit score
In each column, the best performance is shown in boldface
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current set of neighboring nodes), which may affect the
quality of the final alignment.
When it comes to the specificity of the alignment

results, random walk based methods (CUFID-align,
SMETANA-CSRW, and SMETANA) achieve relatively
higher SPE compared to PINALOG and HubAlign. SPE
of HubAlign appears to be more sensitive than the
other methods with respect to the average degrees of
the PPI networks. CUFID-align, SMETANA-CSRW, and
SMETANA achieve similar SPE, often higher than those
of PINALOG and HubAlign. This means that CUFID-
align can in general more accurately align protein pairs

that have the same functional annotations compared to
PINALOG and HubAlign.
Since proteins can have multiple functions, we fur-

ther evaluated the functional consistency of the alignment
results based on the GOC scores, where higher GOC
scores indicate that the obtained alignments are function-
ally more coherent. As we can see in Fig. 5, CUFID-align
achieves higher GOC scores than the other compared
algorithms in all test cases. Again, if the network pairs
have higher average degrees, PINALOG and HubAlign
show comparable GOC scores. However, probably due
to the restricted search space of the seed-and-extend

Fig. 5 GOC scores of various pairwise network alignment algorithms
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approach, GOC scores of PINALOG and HubAlign tend
to be smaller than the other methods when the average
degree of one of the PPI networks is relatively smaller
than that of the other. In comparison, CUFID-align is
more robust to the change of topological properties
such as the average degrees of the PPI networks to be
aligned.
The above results show that CUFID-align can accurately

predict matching proteins in different species that have
similar functionalities, according to the functional anno-
tations of proteins that are currently available. The results
also imply that the proposed algorithmmay provide a use-
ful tool for predicting the functions of unknown proteins
in less studied species through network alignment with
species that have been better studied.
Next, to assess the topological quality of the network

alignment results, we compared the number of conserved
interactions (CI) predicted by different methods. Table 2
shows the CI for all compared methods. As we can
see in Table 2, CUFID-align can identify a larger num-
ber of conserved interactions than SMETANA-CSRW
and SMETANA, but it is smaller than HubAlign and
PINALOG. In fact, our results show that PINALOG and
HubAlign outperform the other methods in terms of CI.
One interesting observation is that although PINALOG
and HubAlign can identify a large number of conserved
interactions compared to CUFID-align, GOC scores for
PINALOG and HubAlign are much smaller than CUFID-
align as shown in Fig. 5. Since both PINALOG and
HubAlign adopt a seed-and-extension approach, the algo-
rithms only align protein nodes if they are connected to

the seed network alignment. PINALOG and HubAlign
may have a higher risk for overfitting the prediction out-
comes to the topological structure of the PPI networks
compared to the other methods, and they may not as
effectively deal with the inserted or deleted nodes as the
random walk based methods, which may be problematic
when handling PPI networks that are incomplete and/or
contain many errors (e.g., many false positive interac-
tions). As the GOC scores were low for PINALOG and
HubAlign, despite the high CI they attained, we wanted
to further evaluate the biological significance of the con-
served interactions in the predicted network alignment
results. For this purpose, we counted the number of con-
served interactions between orthologous protein pairs.
Table 3 summarizes the number of conserved ortholo-
gous interactions (COI) predicted by different algorithms.
Note that, for this experiment, we did not consider
the alignment of networks whose average degrees dif-
fer significantly, since there will be only a small num-
ber of conserved orthologous interactions in such cases.
Table 3 shows that CUFID-align achieves comparable or
higher COI compared to PINALOG and HubAlign except
for the alignment between the yeast and human PPI
networks.
We also compared the network-based approaches with

the sequence-similarity-based approach. As we can see
in Table 1 and Fig. 5, a simple sequence-similarity-based
approach can construct network alignments with high
functional coherence, and that the node similarity score
may provide useful guidelines for identifying orthologous
proteins. However, this results should be taken with a

Table 2 Number of conserved interactions (CI) obtained by different network alignment algorithms

Yeast – Fly Yeast – Worm Yeast – Human Yeast – Mouse Fly – Worm

CUFID-align 1,721 486 3,421 56 347

SMETANA-CSRW 337 110 2,468 31 107

SMETANA 504 171 2,377 37 116

PINALOG 2,982 1,000 6,231 225 666

HubAlign 836 4,013 2,659 545 3,276

IsoRank 1,436 764 3,165 176 558

BLAST-MWBM 246 89 1,317 14 70

Fly – Human Fly – Mouse Worm – Mouse Worm – Human Human – Mouse

CUFID-align 1,547 59 18 459 318

SMETANA-CSRW 710 41 8 198 336

SMETANA 965 50 16 283 337

PINALOG 2,730 88 47 917 358

HubAlign 9,317 491 459 3,743 532

IsoRank 1,471 106 130 569 350

BLAST-MWBM 441 12 2 138 253
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Table 3 Number of conserved orthologous interactions (COI) obtained by different network alignment algorithms

Yeast – Fly Yeast – Worm Yeast – Human Yeast – Mouse Fly – Worm

CUFID-align 91 10 743 5 3

SMETANA-CSRW 91 8 749 6 2

SMETANA 86 10 705 8 4

PINALOG 129 15 970 19 4

HubAlign 57 2 634 15 5

IsoRank 94 11 741 10 4

BLAST-MWBM 74 8 556 4 2

Fly – Human Fly – Mouse Worm – Mouse Worm – Human Human – Mouse

CUFID-align 202 13 1 21 111

SMETANA-CSRW 196 10 1 26 139

SMETANA 230 14 1 26 123

PINALOG 180 22 2 27 134

HubAlign 67 15 4 5 98

IsoRank 185 17 1 18 142

BLAST-MWBM 112 6 0 15 94

grain of salt, since they are likely due to the fact that the
current functional annotations of proteins are often based
on sequence similarity between proteins. As shown in
Tables 2 and 3, BLAST-MWBM – which uses BLAST bit
score andMWBMwithout using any network information
– can identify a much smaller number of CIs and COIs
compared to the network-based methods. These results
imply that strong dependence on sequence similarity for
constructing a network alignment has the potential risk of
getting biased results that may fail to capture important
protein interactions that are conserved across different
species, which may be critical in deciphering the under-
lying cellular mechanisms that involve those interactions.
In contrast, network-based methods, including CUFID-
align, that incorporate topological information for con-
structing network alignments can make accurate and bal-
anced predictions that identify both orthologous proteins
as well as conserved interactions. Our results clearly show
the importance of effective integration of node similar-
ity and topological similarity for effective comparative
analysis of PPI networks.
Finally, Table 4 shows the computation time for each

method. As we can see in this table, CUFID-align needs
the least computation time among all compared methods
in most test cases. Computation time of HubAlign largely
depends on the average degrees of the PPI networks
because HubAlign takes a seed-and-extension approach,
whose search space is strongly affected by the average
degrees of the PPI networks to be aligned. Computation
time of SMETANA-CSRW is proportional to the size of
the PPI networks. The bottleneck for SMETANA-CSRW

is the step for constructing the transition probability
matrix of the context-sensitive random walker (CSRW),
whose computation time is proportional to the size of
the two PPI networks that need to be aligned. PINA-
LOG requires a relatively long computation time com-
pared to other methods in most cases, as shown in
Table 4.

Extension of CUFID-align for the alignment of multiple
networks
In this work, we have focused on the steady-state network
flow approach and its application to the pairwise net-
work alignment problem. However, the problem of mul-
tiple network alignment has been gaining wide interest
in the research community and its practical importance
has been increasing as the number of available PPI net-
works for different species continue to increase. Although
it is beyond the scope of the current paper, we expect
the extension of CUFID-align for multiple network align-
ment will be relatively straightforward. First of all, to this
aim, we can modify the transition probability matrix in
Eq. (9) by concatenating the normalized adjacency matri-
ces and node similarity score matrices for the multiple
PPI networks to be aligned. Following the construction of
this extended transition probability matrix, the steps for
computing the node correspondence scores – shown in
Eqs. (11) and (13) – can be modified by constructing diag-
onal matrices and inserting corresponding the matrices
into the diagonal terms. The extended version of CUFID-
align for multiple PPI network alignment is expected to
have distinctive advantages over other existing multiple
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Table 4 CPU time of the tested network alignment algorithms (in seconds)

Yeast – Fly Yeast – Worm Yeast – Human Yeast – Mouse Fly – Worm

CUFID-align 6.22 4.79 11.22 5.70 12.88

SMETANA-CSRW 243.64 163.24 448.29 435.94 3,002.20

SMETANA 6.65 5.81 11.47 9.12 26.11

HubAlign 451.24 75.67 571.23 5.30 55.87

PINALOG 997.85 1,654.66 1,984.03 2,202.15 2,141.00

IsoRank 1,737.07 369.52 3401.29 64.47 181.55

Fly – Human Fly – Mouse Worm – Mouse Worm – Human Human – Mouse

CUFID-align 18.93 18.38 25.71 28.36 68.59

SMETANA-CSRW 6,104.70 6,420.80 6,383.70 6,084.10 4,9185.00

SMETANA 63.43 60.85 53.24 56.28 454.11

HubAlign 532.31 4.92 1.91 84.45 8.99

PINALOG 3,127.35 1,611.39 101.86 6,764.56 4,864.16

IsoRank 1433.27 37.77 16.92 326.79 77.64

PPI network alignment algorithms. First, it may be able
to estimate the ‘global’ node correspondence scores more
accurately. Currently, most multiple PPI network align-
ment algorithms estimate the node correspondence scores
for every PPI network pair in the interest of computational
complexity. The estimated pairwise node correspondence
scores are later updated based on additional transforma-
tions to make them more suitable for multiple network
alignment. However, considering that the ultimate goal
is in constructing the alignment of multiple networks,
it would be preferable to estimate the node correspon-
dence scores (or equivalently, node alignment probabili-
ties) Pr

[
ui ∼ vj|G

]
considering all networks, rather than

just estimating Pr
[
ui ∼ vj|GX ,GY

]
based on the given net-

work pair, where ui ∈ GX , vj ∈ GY , and G is the set of
all PPI networks including GX and GY . Since the afore-
mentioned extension of CUFID-align estimates the node
correspondence scores based on an integrated network
that combines all networks in G, it has the potential
to accurately compute the posterior node-to-node align-
ment probability given all the networks. Computation
of such ‘global’ node correspondence score may lead to
improved multiple network alignment results. Second,
the extended version of CUFID-align will still be com-
putationally very efficient, as most steps in CUFID-align
only require simple matrix operations even if extended
to multiple networks. Finally, the extended approach will
require relatively low computational resources (especially,
in terms of memory). For example, suppose that there
are N PPI networks, where the number of nodes in the
i-th network Gi is Vi. To align the N PPI networks, Iso-
RankNwill need the pairwise node correspondence scores
for each of the

(N
2
)
network pairs, where for each pair,

the algorithm will need to construct a
∣
∣Vi · Vj

∣
∣ × ∣

∣Vi · Vj
∣
∣

dimensional matrix. However, CUFID-align can compute
the global node correspondence scores by constructing

a single
∣
∣
∣
∣
N∑

i=1
Vi

∣
∣
∣
∣ ×

∣
∣
∣
∣
N∑

i=1
Vi

∣
∣
∣
∣ dimensional matrix. We are

currently working on extending CUFID-align for multiple
network alignment.

Conclusions
In this paper, we proposed CUFID-align, a novel network
alignment algorithm based on the concept of steady-state
network flow of a Markov random walk model on an
integrated network. Given a pair of PPI networks, CUFID-
align constructs an integrated network and a Markov
random walk model on the resulting network such that
the steady-state network flow between a pair of nodes
in different PPI networks increases when the nodes have
higher pairwise node similarity (typically measured based
on sequence similarity) and topological similarity. For this
purpose, the Markov random walk model is designed to
make more frequent transitions between protein nodes
that have higher overall similarity, thereby making the
steady-state network flow – which reflects the long-run
behavior of the random walker – an effective measure
of the correspondence between nodes that belong to dif-
ferent networks. As we have shown in our performance
assessment results using real PPI networks in the IsoBase
database, CUFID-align can accurately align proteins with
identical functional annotations at a relatively low com-
putational cost. Our results show that CUFID-align may
provide an effective means of computationally annotating
the functions of proteins through comparative analysis of
PPI networks.
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