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ABSTRACT

Graph-based systems and data analysis methods have become critical tools in many

fields as they can provide an intuitive way of representing and analyzing interactions be-

tween variables. Due to the advances in measurement techniques, a massive amount of

labeled data that can be represented as nodes on a graph (or network) have been archived

in databases. Additionally, novel data without label information have been gradually gen-

erated and archived. Labeling and identifying characteristics of novel data is an important

first step in utilizing the valuable data in an effective and meaningful way. Comparative

network analysis is an effective computational means to identify and predict the properties

of the unlabeled data by comparing the similarities and differences between well-studied

and less-studied networks. Comparative network analysis aims to identify the matching

nodes and conserved subnetworks across multiple networks to enable a prediction of the

properties of the nodes in the less-studied networks based on the properties of the matching

nodes in the well-studied networks (i.e., transferring knowledge between networks).

One of the fundamental and important questions in comparative network analysis is

how to accurately estimate node-to-node correspondence as it can be a critical clue in

analyzing the similarities and differences between networks. Node correspondence is a

comprehensive similarity that integrates various types of similarity measurements in a

balanced manner. However, there are several challenges in accurately estimating the node

correspondence for large-scale networks. First, the scale of the networks is a critical issue.

As networks generally include a large number of nodes, we have to examine an extremely

large space and it can pose a computational challenge due to the combinatorial nature of

the problem. Furthermore, although there are matching nodes and conserved subnetworks

in different networks, structural variations such as node insertions and deletions make it
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difficult to integrate a topological similarity.

In this dissertation, novel probabilistic random walk models are proposed to accurately

estimate node-to-node correspondence between networks. First, we propose a context-

sensitive random walk (CSRW) model. In the CSRW model, the random walker analyzes

the context of the current position of the random walker and it can switch the random

movement to either a simultaneous walk on both networks or an individual walk on one

of the networks. The context-sensitive nature of the random walker enables the method

to effectively integrate different types of similarities by dealing with structural variations.

Second, we propose the CUFID (Comparative network analysis Using the steady-state

network Flow to IDentify orthologous proteins) model. In the CUFID model, we construct

an integrated network by inserting pseudo edges between potential matching nodes in

different networks. Then, we design the random walk protocol to transit more frequently

between potential matching nodes as their node similarity increases and they have more

matching neighboring nodes. We apply the proposed random walk models to comparative

network analysis problems: global network alignment and network querying. Through

extensive performance evaluations, we demonstrate that the proposed random walk models

can accurately estimate node correspondence and these can lead to improved and reliable

network comparison results.
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1. INTRODUCTION

1.1 Background

Graph-based system and data analysis techniques have become a critical tool in many

fields as it can provide an intuitive way of representing interactions between variables and

analyzing them [1, 2, 3, 4]. In recent years, graph-based techniques have been widely

applied to the analysis of social networks [5, 6], images [7, 8], and biological networks [9,

10]. Additionally, we can infer the properties of the less-studied system by comparing

it with the well-studied systems and finding the corresponding elements. To this aim,

given multiple graphs, one question that is of practical importance is how the nodes in a

given graph can be mapped to nodes in the other graphs based on the similarity between

nodes and the topological similarity between graphs. Considering that each node may

have a number of similar nodes in the other graphs and that the graphs may have signifi-

cant differences in their topology, quantitatively estimating this overall similarity between

nodes – or the node correspondence – is theoretically challenging. Furthermore, estimat-

ing these similarities can pose computational challenges, especially for large graphs, due

to the combinatorial nature of the problem.

So far, several methods have been proposed for measuring the node correspondence

between graphs, where random walk based methods have been popular as they are intu-

itive and can be efficiently implemented [10, 11, 12, 13, 14, 15]. These methods perform

a simultaneous random walk on the two graphs to be compared, where the random walk

scheme is designed such that the walker more frequently visits (or stays longer at) node

pairs that have higher similarity and are surrounded by a larger number of similar node

pairs. The stationary probability of the resulting (semi-)Markov model gives us the long-

run proportion of time that the random walker simultaneously visits (and stays at) a given
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node pair, which can be used as the correspondence score between the two nodes. This

score provides a simple and intuitive way of measuring the overall similarity between

two nodes in different graphs by integrating the node similarity and the topological sim-

ilarity [10]. Recently, these random walk models have been applied to the comparative

analysis of large-scale biological networks [12, 13].

In this study, we have studied effective methods for comparative network analysis

based on a graphical representation of systems so that we can transfer the knowledge of the

well-analyzed system into the less-studied system. We have proposed novel random walk

models that can significantly improve the accuracy of the estimation of the node-to-node

correspondence between different graphs. Additionally, we have verified the effectiveness

of the proposed method on biological networks. Although we mainly present the per-

formance evaluations using biological networks, the proposed random walk models and

algorithms can be applied to various types of networks. Note that two terms, network and

graph, are utilized interchangeably in this dissertation.

1.2 Outline of the dissertation

In this dissertation, we propose novel probabilistic random walk models and present

their applications to comparative network analysis using biological networks. In the chap-

ter 2, we propose the context-sensitive random walk model to estimate node-to-node cor-

respondence between graphs through a long-run behavior of a random walker. In the

chapter 3, we propose a novel random walk model, called the CUFID model, to estimate

node correspondences by measuring the steady-state network flow between networks. We

will show that the CUFID model further improves the estimation accuracy of the node

correspondences with the reduced computational complexity. In the chapter 2 and 3, we

present the potential applications of the proposed random walk models in global network

alignment and network querying problem. We will demonstrate the effectiveness of the

2



proposed random walk models through extensive performance evaluations using synthetic

networks and real biological networks.
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2. ESTIMATION OF NODE-TO-NODE CORRESPONDENCE BETWEEN

DIFFERENT GRAPHS ∗

In this chapter, we propose a novel random walk model that can significantly improve

the accuracy of the estimation of the node correspondence between different graphs. The

proposed random walker performs a random walk on the two graphs to be compared,

where it can switch its mode between a simultaneous walk on both graphs and an indi-

vidual walk on one of the graphs. The mode switching is determined by the presence (or

absence) of similar node pairs among the current neighbors. Through extensive simula-

tions, we show that the proposed model leads to an enhanced node-correspondence scoring

method that clearly outperforms existing methods.

2.1 Context-sensitive random walk model

Consider two graphs GU = (U ,D) and GV = (V , E), where GU consists of a set U =

{u1, u2, · · · } of nodes and a set D = {dij} of edges between nodes ui and uj and GV

consists of a set V = {v1, v2, · · · } of nodes and a set E = {eℓm} of edges between nodes

vℓ and vm. We assume that a nonnegative pairwise node similarity score s(ui, vj) is given

for every node pair (ui, vj). Our goal is to estimate the node correspondence score c(ui, vj)

for every node pair (ui, vj) that quantifies the overall similarity between these nodes by

integrating the pairwise node similarity scores and the topological similarity between the

two graphs in a reasonable manner. In other words, we want the node correspondence

score c(ui, vj) to be proportional to the posterior alignment probability P [ui ∼ vj|GU ,GV ]

∗Part of this chapter is reprinted with a permission from “Hyundoo Jeong and Byung-Jun Yoon. Effective
estimation of node-to-node correspondence between different graphs. IEEE Signal Processing Letters" [16]
c⃝ [2015] IEEE and “Hyundoo Jeong and Byung-Jun Yoon. Accurate multiple network alignment through

context-sensitive random walk. BMC Systems Biology, 9(Suppl. 1):S7, 2015" [17] c⃝ [2015] BioMed
Central and “Hyundoo Jeong and Byung-Jun Yoon. SEQUOIA: Significance enhanced network querying
through context-sensitive random walk and minimization of network conductance. BMC Systems Biology,"
11(Suppl. 3):20, [18] c⃝ [2017] BioMed Central.
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Figure 2.1: Illustration of the context-sensitive random walk model. The shaded nodes
show the current position of the random walker on the two graphs. The dashed arrows
indicate the movement of the random walker at the next time step [16] c⃝ [2015] IEEE.

of ui and vj given GU and GV .

2.1.1 Motivation and overall approach

We propose a novel random walk model to measure the node correspondence score

c(ui, vj). Our random walk model is motivated by the pair hidden Markov model (pair-

HMM), which has been widely used for the comparative analysis of biological sequences

(e.g., sequence alignment) due to its simplicity and effectiveness [19, 20].

Unlike traditional HMMs, which generate a single symbol sequence, the pair-HMM

generates a pair of aligned symbol sequences. A typical pair-HMM has three different

states: M , I1, and I2. At the M state (indicates a “matched” symbol pair), the HMM emits

an aligned symbol pair. On the other hand, at the Ik state (indicates an “inserted” symbol

in either sequence), the HMM only emits a symbol to sequence-k alone that is aligned to

a gap symbol in the other sequence. Given two (unaligned) symbol sequences, we can use

the forward-backward algorithm to predict the alignment probabilities between symbols

in the two sequences based on the pair-HMM [20].
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Similarly, the proposed random walk model has three different internal states, M , IU ,

and IV , where each state corresponds to a different “mode” of random walk. At a M state,

which corresponds to “matched” node pair, the random walker makes a simultaneous walk

on both graphs, moving into a pair of matched nodes. This is illustrated in Figure 2.1a.

On the other hand, at state IU (or state IV ), the random walker makes an “individual” walk

on graph GU (or GV). Figure 2.1b illustrates the individual walk at state IU . The random

walker can switch its mode between a simultaneous walk and an individual walk, in a

context dependent way by examining the neighborhood. In the presence of node pairs in

the immediate neighborhood with a positive node similarity score, the random walker will

make a simultaneous move on both graphs by randomly moving into one of the similar

node pairs (M state). Otherwise, the random walker will make a transition to either state

IU or IV and make a random move only on the corresponding graph.

Based on this random walk model, we estimate the steady state probabilities of this

random walk, or in other words, the long-run proportion of time that the random walker

will simultaneously visit a given node pair. Finally, from these steady state probabilities,

we estimate the actual proportion of time that the random walker spends at a given node

pair by “entering” the nodes simultaneously (i.e., at state M ), which we used as the corre-

spondence score for the node pair. It should be noted that this last step is crucial, since we

are not interested in the case when the random walker happens to stay at a node pair as a

result of an individual move on one of the graphs. In such cases, the simultaneous visit of

the two nodes is coincidental and is not a direct result of the relevance between the given

nodes.

2.1.2 Proposed random walk model

Let GX = (X , EX ) be the product graph of GU and GV , where the nodes in the graph

GX correspond to node pairs (ui, vj), ui ∈ U and vi ∈ V . Two nodes in the prod-
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uct graph GX are connected if and only if the corresponding nodes are connected in

both GU and GV . Joint random walk on the two graphs GU and GV , both simultane-

ous walk and individual walk, can be viewed as a random walk on this product graph

GX . We define M = {(ui, vj) |s (ui, vj) > 0, ui ∈ U , vj ∈ V} as the set of similar node

pairs, where s (ui, vj) is the pairwise node similarity score for the node pair (ui, vj).

Suppose that the random walker is currently located at (uc, vc) for some uc ∈ U and

vc ∈ V . Let us define the set of similar node pairs in the neighborhood of (uc, vc) as

N (uc, vc) = {(ui, vj) |ui ∈ N (uc), vj ∈ N (vc), (ui, vj) ∈ M}, where N (uc) is the set of

neighbors of node uc in graph GU and N (vc) is the set of neighbors of node vc in graph

GV .

If there are similar node pairs in the current neighborhood, hence N (uc, vc) ̸= ∅,

the random walker makes a simultaneous move on both graphs, from (uc, vc) to (ui, vj),

according to the following transition probabilities:

P
[
(ui, vj) | (uc, vc)

]
=

s (ui, vj)∑
(ui′ ,vj′ )∈N (uc,vc)

s (ui′ , vj′)
. (2.1)

On the other hand, if there is no similar node pair in the neighborhood, hence N (uc, vc) =

∅, the random walker randomly selects either GU or GV and performs an individual walk

only on the selected graph. The probability that each graph will be selected is propor-

tional to its size (i.e., number of nodes in the graph), and in the selected graph, the random

walker will move into one of the neighboring nodes with equal probability. The resulting

transition probabilities are given by

P
[
(ui, vc) | (uc, vc)

]
=

|U|
|U|+ |V|

× 1

|N (uc)|
(2.2a)

P
[
(uc, vj) | (uc, vc)

]
=

|V|
|U|+ |V|

× 1

|N (vc)|
(2.2b)
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for ui ∈ N (uc) and vj ∈ N (vc). Note that |U| and |V| denote the number of nodes in

the graph GU and GV , respectively. From (2.1), (2.2a), and (2.2b), we can construct the

transition probability matrix P for the random walk on the product graph GX . In practice,

the matrix P will be often sparse, as the original graphs GU and GV that arise in practical

applications will be typically sparse. This property makes it easy to compute the steady

state probability π(ui, vj) of the random walk using the power method [12, 13, 21]. Given

π(ui, vj), we finally compute the actual proportion of time π̂(ui, vj) that the random walker

spends at (ui, vj) by entering the node pair through a simultaneous random walk (i.e., at

state M ) as follows:

π̂(ui, vj) =
∑

(up,uq)∈N (ui,uj)
π(up, uq) · P

[
(ui, vj) | (up, vq)

]
, (2.3)

for all (ui, vj) ∈ M. Finally, we define the correspondence score between two nodes ui

and vj as c(ui, vj) ≡ π̂(ui, vj), where ui ∈ GU and vj ∈ GV . As we will demonstrate in the

following section, the proposed scoring scheme effectively quantifies the overall similarity

between nodes in different graphs by seamlessly integrating the pairwise node similarity

and the topological similarity between graphs.

2.1.3 Performance assessments

In order to demonstrate the effectiveness of the proposed scoring method, we per-

formed extensive simulations based on synthetic graphs [22]. To evaluate the performance,

we computed the node correspondence scores using the proposed scheme, and used the

scores to predict the graph alignment through greedy one-to-one mapping. More specifi-

cally, we started from an empty alignment and built up the graph alignment by iteratively

adding one node pair at a time according to its correspondence score in a descending or-

der. Given the final alignment, we define the equivalence class as the set of nodes that are

aligned to each other. A given equivalence class is said to be correct if the aligned nodes
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Pair. Sim. Score IsoRank SMETANA CSRW
CN 519 549 533.4 704.4

MNE 0.28 0.31 0.27 0.15
CE 510.2 581.5 554.3 1,000.4

Table 2.1: Performance comparison of different scoring methods [16] c⃝ [2015] IEEE.

have the same label, indicating that they belong to the same functional class. We com-

puted three different metrics to assess the goodness of the predicted alignment: correct

nodes (CN), mean normalized entropy (MNE), and conserved edges (CE). CN is the total

number of aligned nodes that belong to the correct equivalence class. The coherence of

the node mapping can be accessed by MNE. MNE for a given equivalence class C can be

computed by H (C) = − 1
log d

∑d
i=1 pi log pi, where pi is the relative proportion of nodes in

C with label i and d is the total number of different labels. A mapping with higher coher-

ence will lead to a lower entropy. CE counts the total number of conserved edges between

aligned nodes in the predicted graph alignment. CE can be used to assess the performance

of detecting conserved topological structures across graphs. For comparison, we repeated

similar experiments by using two state-of-the-art scoring schemes used in IsoRank [12]

(parameter α was set to 0.6 as in the original paper) and SMETANA [13].

Using the NAPAbench package [22], we generated 10 pairs of synthetic graphs based

on the crystal growth model [23], where each pair consists of a graph with 750 nodes and

another graph with 1,000 nodes. On average, the smaller graphs had around 3,000 edges

and the larger graphs had around 4,000 edges. For every pair of graphs, the true corre-

spondence between the nodes in the two graphs are known, hence we can evaluate the

effectiveness of the proposed scheme. Table 2.1 shows the performance of different scor-

ing methods. The proposed method clearly outperforms all other methods. For example,

the proposed scoring method finds around 30 percent more correct nodes compared to the

9
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Figure 2.2: Performance dependence on pairwise node similarity: correct nodes (left),
mean normalized entropy (center), and conserved edges (right) [16] c⃝ [2015] IEEE.

scoring methods in IsoRank [12] and SMETANA [13]. Furthermore, the proposed method

yields a more coherent mapping as indicated by the lower MNE. It is also important to

note that our proposed method results in significantly higher CE, which implies that the

resulting node correspondence scores capture the topological similarity between graphs

more effectively.

Next, we evaluated the influence of the pairwise node similarity scores on the perfor-

mance of each method. For this purpose, we introduced an additional bias term to further

separate the distribution of the pairwise node similarity score between nodes with the same

label and the score distribution for nodes with different labels. A higher bias makes it eas-

ier to predict the correspondence between nodes in different graphs based on the pairwise

node similarity score alone (i.e., without taking topological similarity into account). Fig-

ure 2.2 shows that the proposed method significantly outperforms other scoring methods

for a wide range of bias. As we would expect, the performance difference between the

proposed method and the other methods decreases with an increasing bias, as it becomes

easier to distinguish relevant nodes from irrelevant ones.
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2.1.4 Conclusions

In this subchapter, we proposed a context-sensitive random walk model for scoring

the correspondence between nodes that belong to two different graphs. The proposed

method utilizes a novel random walk model that switches between two different modes of

random walk – simultaneous walk on both graphs and individual walk on either graph –

in a context dependent manner. The node correspondence scores are estimated based on

the steady stationary probabilities of the random walk. Simulation results show that the

proposed scoring method significantly outperforms previous methods that rely on different

random walk models in terms of accuracy and robustness. Our scoring scheme can provide

an effective and computationally efficient foundation for comparative analysis of graphs,

including biological networks and social networks.

2.2 Network alignment through the context-sensitive random walk model

2.2.1 Background and motivation

With the availability of large-scale protein-protein interactions (PPI) networks, com-

parative network analysis tools have been gaining increasing interests as they provide use-

ful means of investigating the similarities and differences between different networks. As

demonstrated in [9, 24], PPI networks of different species embed various conserved func-

tional modules – such as signaling pathways and protein complexes – which can be de-

tected through network querying [11, 25, 26] and network alignment algorithms [12, 13,

27, 28, 29, 30, 31, 32, 33]. Comparative network analysis methods allow us to transfer

existing knowledge on well-studied organism to less-studied ones and they have the po-

tential to detect potential functional modules conserved across different organisms and

species [9, 10, 24].

There exist several different types of comparative network analysis methods, among

which global network alignment methods specifically aim to predict the best overall map-
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ping among two or more biological networks. In order to obtain biologically meaningful

results, where functionally similar biomolecules across networks are accurately mapped

to each other, we should consider both the molecule-level similarity between the individ-

ual molecules as well as the similarity between their interaction patterns. The former is

often called the “node similarity” while the latter is typically referred to as the “topolog-

ical similarity.” Examination of conserved functional modules shows that many of the

molecular interactions in such modules are also well conserved, clearly showing the im-

portance of taking the topological similarity into account when comparatively analyzing

biological networks. Biological networks, such as PPI networks, are typically represented

as graphs, where the nodes represent individual biomolecules (e.g., proteins) and interac-

tions (e.g., protein binding) between biomolecules are represented by edges connecting

the corresponding nodes. Given these graph representations of biological networks, the

network alignment problem can be formulated as an optimization problem whose goal is

to find the optimal mapping – either one-to-one or many-to-many – among a set of graphs

that maximizes a scoring function that assesses the goodness of a given mapping. This is

essentially a combinatorial optimization problem with a exponentially large search space,

which makes finding the optimal mapping practically infeasible for large networks. As a

result, existing network alignment methods employ various heuristic techniques to make

the network alignment problem computationally tractable.

Several global network alignment algorithms have been proposed so far [12, 13, 27, 28,

29, 30, 31, 34, 32, 33], many of which focus on the pairwise network alignment [35]. For

example, GRAAL [29] analyzes the graphlet degree signature for two PPI networks, where

it can generalize the degree of node by counting the number of graphlets for each node,

and then align the two networks using a seed-and-extend approach. MI-GRAAL [30] ex-

tends GRAAL by integrating further sources of information (e.g., clustering coefficient or

functional similarity) to measure the similarity between two networks. PINALOG [31]
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is another example of pairwise network alignment algorithm, which constructs the initial

mapping for protein nodes that form dense subgraphs in the respective networks. This

initial mapping is further extended by subsequently finding similar nodes in the neighbor-

hood. HubAlign [34] first assigns weights to the nodes and edges in the PPI networks

based on their topological importance (i.e., likelihood to be a hub), and then calculates the

alignment score for every pair of proteins based on the global topological property and

sequence information. Then, the algorithm constructs a global network alignment using a

greedy seed-and-extension approach. Recently, a number of multiple network alignment

algorithms have been proposed [13, 32, 33]. For example, SMETANA [13] tries to esti-

mate probabilistic node correspondence scores using a semi-Markov random walk model,

and then uses the estimated scores to predict the maximum expected accuracy (MEA)

alignment of the given networks. Given a set of networks, NetCoffee [32] generates all

possible combinations of bipartite graphs for these networks, and updates the edges in

each bipartite graph based on the sequence similarity of the proteins and the topological

structure of the networks. Then, the algorithm finds candidate edges (i.e., mappings) in the

bipartite graphs and combines qualified edges through simulated annealing. BEAMS [33]

is another recent multiple network alignment algorithm, which first extracts the so-called

“backbones”, or the minimal set of disjoint cliques in the filtered similarity graph, and then

iteratively merges these backbones to maximize the overall alignment score.

In this subchapter, we propose a novel multiple network alignment algorithm based on

a context-sensitive random walk (CSRW) model. The employed CSRW model adaptively

switches between different modes of random walk in a context-sensitive manner by sens-

ing and analyzing the present neighborhood of the random walker. This context-sensitive

behavior improves the quantitative estimation of the potential correspondence between

nodes belonging to different networks, ultimately, improving the overall accuracy of the

multiple network alignment as we will demonstrate through extensive performance evalu-
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ation based on real and synthetic biological networks.

2.2.2 Methods

Let us assume that we have a set of N PPI networks G = {G1,G2, . . . ,GN}. Each

network Gn = (Vn, En) has a set of nodes Vn = {v1, v2, . . .} and edges En = {ei,j}, where

ei,j represents the interaction between nodes vi and vj in the network Gn. For each pair

of PPI networks GU = (U ,D) and GV = (V , E), we denote the pairwise node similarity

score for a node pair (ui, vj), where ui ∈ U and vj ∈ V , as s (ui, vj). In this study,

we use the BLAST bit score between proteins as their node similarity score, but other

types of similarity scores based on structural or functional similarity can be also utilized if

available.

Suppose A∗ is the true alignment of the networks in the set G, which is unknown

and needs to be predicted. As in [13, 36], we can define the accuracy of a given network

alignment A as follows:

accuracy (A,A∗) =
1

|A|
∑

ui∼vj∈A

1 (ui ∼ vj ∈ A∗), (2.4)

where 1 (·) is an indicator function, whose value is 1 if the mapping ui ∼ vj is included

in the true alignment A∗ and 0 otherwise. The given measure assesses the goodness of

the alignment A based on the relative proportion of correctly aligned nodes. Of course,

since the true alignment is not known, the accuracy of a network alignment A cannot

be measured using (2.4), hence we cannot directly use this measure to compare different

potential alignments to choose the best one. A reasonable alternative would be to estimate

the expected accuracy as follows:

EA∗ [accuracy (A,A∗)] =
1

|A|
∑

ui∼vj∈A

P (ui ∼ vj|G), (2.5)

14



where P (ui ∼ vj|G) is the posterior alignment probability between the nodes ui and vj

given the set of networks G. Based on this measure, our objective is then to predict

the maximum expected accuracy (MEA) network alignment Ã∗ of the networks in G as

follows:

Ã∗ = max
A

EA∗ [accuracy (A∗,A)] . (2.6)

A similar MEA approach [37] has been formerly adopted by a number of multiple se-

quence alignment algorithms, including ProbCons [36], ProbAlign [38], and PicXAA [39,

40, 41]. The MEA framework has been shown to be very effective in constructing accurate

alignment of multiple biological sequences, making it one of the most popular approaches

for a sequence alignment. Recently, the MEA approach has been also applied to compar-

ative network analysis, where RESQUE [11] performs MEA-based network querying and

SMETANA [13] performs MEA-based multiple network alignment.

In order to find the alignment that maximizes the expected accuracy defined in (2.5),

we first need an accurate method for estimating the posterior node alignment probability

P (ui ∼ vj|G). For this purpose, we adopt a proposed context-sensitive random walk

model [16].

Suppose we want to measure the correspondence between nodes that belong to two

different networks GU = (U ,D) and GV = (V , E), both of which are included in G,

the set of PPI networks to be aligned. For every node pair (ui, vj), where ui ∈ U and

vj ∈ V , our goal is to quantify the level of confidence – which we refer to as the node

correspondence score – using the CSRW model discussed earlier. For this purpose, based

on the transition probabilities given by (2.1), (2.2a), and (2.2b), we can construct the tran-

sition probability matrix P that corresponds to the context-sensitive random walk for a

simultaneous walk and individual walk on the two networks GU and GV . Given P, we can

estimate the long-run proportion of time that the random walker spends in each pair of
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nodes (ui, vj) by computing the steady state probability π. In practice, since real PPI net-

works typically have a relatively small number of interactions (therefore only few edges

for most nodes), the resulting transition probability matrix for the CSRW is sparse, which

makes it relatively straightforward to compute the steady state distribution using the power

method [12, 13, 21].

In order to increase the computational efficiency of the proposed network alignment

method, instead of using the original transition probability matrix P, we use a reduced

matrix P̃. The reduced matrix P̃ is obtained by removing the rows and columns in P that

correspond to node pairs in I while keeping only the rows and columns that correspond to

node pairs in M. After the reduction, P̃ is re-normalized to make it a legitimate stochastic

matrix. In practice, since the CSRW is designed to spend more time at node pairs with

higher similarity, the random walker spends a relatively small amount of time at node-

pairs that belong to the set I, and using the reduced matrix P̃ instead of P only minimally

affects the estimated long-run proportion of time spent at (ui, vj) ∈ M.

We make one further modification to the CSRW in [16] by allowing the random walker

to restart at a new position at each time step with a fixed restart probability λ. Note

that a similar “random walk with restart” approach was used by IsoRank [12] and Iso-

RankN [27], although these algorithms do not utilize the CSRW adopted in our method.

We allow the random walker to select its restart position according to the pairwise node

similarity, such that node pairs with higher node similarity have higher chance to be the

restart position of the random walker. To this aim, we normalize the pairwise node sim-

ilarity scores so that they sum up to 1. Our final node correspondence score vector c is

obtained from a linear combination of the steady-state distribution of the context-sensitive

random walker π̃ (estimated using the reduced transition probability matrix P̃) and the
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normalized node similarity score vector s as follows:

c = λs+ (1− λ) π̃. (2.7)

The above formulation, obtained by allowing the CSRW to restart the random walk at a

new position, is especially useful when comparing real PPI networks, which are often in-

complete and contain many isolated nodes. Simulation results show that the incorporation

of the restart scheme can make our CSRW-based alignment method more robust, espe-

cially when the available topological data are either unreliable or insufficient for detecting

the similarities between networks.

In order to determine the restart probability λ, we first analyze the structure of the re-

duced product graph of GU and GV that contains only similar node pairs included in M.

Intuitively, it is desirable to increase the restart probability λ if the networks are discon-

nected and decrease the probability if the networks are well connected. For example, if

all the nodes in the reduced product graph are completely disconnected, it is desirable to

restart the random walker at every step. Additionally, when we consider the following two

cases – (i) most nodes in the product graph are connected and there are only a few discon-

nected nodes; (ii) the product graph is equally divided into N connected subnetworks of

identical size – it would be desirable to assign a higher λ to the latter case. Based on these

intuitions, we set the restart probability λ as the ratio of the total number of nodes in the

top K% smallest subnetworks to the total number of nodes in the reduced product graph.

In this work, we used K = 99% to determine the restart probability λ.

Once we have computed the node correspondence scores in (2.7) for every pair of

networks in G, we take a greedy approach as in [13] to construct the multiple network

alignment. The overall alignment process is as follows. First, in order to improve the

reliability of the node correspondence scores, we selectively apply the probabilistic con-
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sistent transformation (PCT) defined in [13]. If λ is larger than a predefined threshold

λt, we do not apply PCT to the node correspondence scores. A large λ implies that the

product graph is ill connected (e.g., containing a large number of isolated nodes), in which

case applying the PCT would not be helpful and may in fact make the scores less reliable.

This is because the PCT in [13] was developed based on the assumption that the product

graphs for all network pairs are relatively well connected. After the potential score refine-

ment step through PCT, we begin with an empty alignment and greedily add aligned node

pairs (ui, vj) to the network alignment, starting from the pairs with the highest node corre-

spondence scores, until there is no other node pair left that can be added without creating

inconsistencies in the network alignment. Assuming that the node correspondence scores

in (2.7) obtained by the context-sensitive random walk model with restart accurately re-

flect the true correspondence between nodes – such that the score is proportional to the

posterior node alignment probability – the proposed network alignment scheme can be

viewed as a heuristic way to find the MEA alignment of the networks in G.

2.2.3 Results

To assess the performance of the proposed method, we tested the proposed network

alignment method based on PPI networks in NAPAbench [22] and IsoBase [42]. NA-

PAbench is a network alignment benchmark that consists of 3 different datasets, referred to

as the pairwise alignment dataset, 5-way alignment dataset, and 8-way alignment dataset.

Each dataset contains three different subsets of 10 network families, each subset cre-

ated using a different network growth model – CG (crystal growth), DMC (duplication-

mutation-complementation), and DMR (duplication with random mutation). Each net-

work family consists of 2, 5, or 8 PPI networks depending on the alignment dataset. For

network families in the pairwise alignment dataset, each family contains one network with

3,000 nodes and the other with 4,000 nodes. In the 5-way network alignment dataset, a
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network family consists of 5 networks with 1,000, 1,500, 2,000, 2,500, and 2,500 nodes.

Finally, in the 8-way alignment dataset, every network family consists of 8 networks,

where each network contains 1,000 nodes. To evaluate the performance of the proposed

method on real PPI networks, we utilized IsoBase datasets [42], which was constructed

by integrating the following databases: BioGRID [43], DIP [44], HPRD [45], MINT [46],

and IntAct [47]. IsoBase contains the PPI networks of five species: H. sapiens, M. mus-

culus, D. melanogaster, C. elegans, and S. cerevisiae. Currently, the PPI network of H.

sapiens in [42] has 22,369 proteins and 43,757 interactions, the PPI network of M. mus-

culus has 24,855 proteins and 452 interactions, the PPI network of D. melanogaster has

14,098 proteins and 26,726 interactions, the PPI network of C. elegans has 19,756 proteins

and 5,853 interactions, and the PPI network of S. cerevisiae has 6,659 proteins and 38,109

interactions. In our analysis, we excluded the M. musculus network as it currently contains

only a small number of interactions.

Based on our simulations, we report the following performance metrics: correct nodes

(CN), specificity (SPE), mean normalized entropy (MNE), conserved interaction (CI), cov-

erage and computation time. CN is the total number of nodes in the correct equivalence

classes. Given a network alignment, an equivalence class is defined as the set of aligned

nodes, and if all nodes in the equivalence class have the same functionality the given equiv-

alence class is said to be correct. SPE is the relative number of correct equivalence classes

to the total number of equivalence classes in a network alignment. For each equivalence

class C, the normalized entropy can be computed by H (C) = − 1
log d

∑d
i=1 pi log pi, where

pi is the relative proportion of nodes in C with functionality i and d is the total number of

different functionalities in the given equivalence class. As a result, a network alignment

that accurately maps functionally similar nodes, hence being functionally consistent, will

have lower mean normalized entropy. CI is defined as the total number of edges between

equivalence classes. We also count the total number of edges between correct equivalence
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classes, which we refer to as the conserved orthologous interactions (COI), to assess the

biological relevance of the conserved interactions that have been identified by the net-

work alignment method. Finally, for 5-way and 8-way alignment datasets, we measure

the equivalence class coverage and the node coverage, where the former is the number

of equivalence classes that include nodes from k different networks, and the latter is the

number of nodes in an equivalence class whose equivalence class coverage is k. For the

performance evaluation based on real PPI networks in IsoBase, we determined the func-

tionality of each protein using the KEGG protein annotation [48, 49]. Note that nodes

without any functional annotation in each equivalence class and equivalence classes that

consist of a single node or nodes from a single network were removed before computing

the performance metrics.

We compared the performance of the proposed multiple network alignment method

against a number of state-of-the-art algorithms: SMETANA [13], IsoRankN [27], PINA-

LOG [31], NetCoffee [32], and BEAMS[33]. NetCoffee was not included in pairwise net-

work alignment experiments, since it requires at least 3 networks. For multiple network

alignment experiments, PINALOG was excluded as the algorithm can only handle pair-

wise alignments. For IsoRankN, we set the parameter α to 0.6 as in the original paper [27].

For BEAMS, we set the filtering threshold to 0.4 for IsoBase and 0.2 for NAPAbench as

in the original paper [33], and set the parameter α to 0.5. The parameter α for NetCoffee

was set to 0.5. We used default parameters for SMETANA (i.e., nmax = 10, α = 0.9, and

β = 0.8), and the same parameters were used in the proposed network alignment method

as well. Finally, in the proposed method, we used λt = 0.7 to determine whether or not to

apply PCT to the estimated node correspondence scores.

All experiments were performed on a personal computer with a 2.4GHz Intel i7 pro-

cessor and 8GB memory.

We first evaluated the performance of the proposed algorithm using the NAPAbench
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DMC DMR CG
CN SPE MNE CN SPE MNE CN SPE MNE

Proposed 5,593.9 0.958 0.039 5,305.3 0.939 0.055 4,893.2 0.942 0.054
SMETANA 5,164.5 0.926 0.068 4,900.6 0.916 0.078 4,846.2 0.949 0.048

BEAMS 5,076.5 0.826 0.150 5,176.7 0.840 0.138 5,441.2 0.870 0.112
PINALOG 3,779 0.726 0.274 3,533.4 0.683 0.317 4,325 0.788 0.212
IsoRankN 3,816.5 0.827 0.163 3,905.2 0.836 0.155 3,863.2 0.832 0.159

Table 2.2: Performance comparison for pairwise network alignment [17] c⃝ [2015] BMC.

DMC DMR CG
CN SPE MNE CN SPE MNE CN SPE MNE

Proposed 7,536.7 0.940 0.047 7,410.3 0.934 0.053 7,177.6 0.919 0.060
SMETANA 7,273.2 0.912 0.069 7,181.8 0.915 0.068 7,331.6 0.935 0.048

BEAMS 6,842.2 0.863 0.104 6,882 0.873 0.096 7,376.5 0.921 0.062
NetCoffee 6,431.2 0.894 0.090 6,395.7 0.890 0.093 6,150.2 0.854 0.120
IsoRankN 5,559 0.920 0.147 5,462.3 0.793 0.162 5,688.4 0.828 0.132

Proposed (all 5 species) 4,476.9 0.931 0.048 4,017.9 0.916 0.060 3,644.8 0.900 0.068
SMETANA (all 5 species) 4,062.3 0.891 0.077 3,704.9 0.889 0.080 3,778.9 0.922 0.052

BEAMS (all 5 species) 2,858.4 0.814 0.121 3,095.2 0.838 0.104 3,510.3 0.918 0.052
NetCoffee (all 5 species) 2,960.4 0.867 0.106 2,973.3 0.855 0.113 2,841.2 0.796 0.156
IsoRankN (all 5 species) 1,668.1 0.728 0.179 1,595.4 0.677 0.215 2,233.5 0.742 0.168

Table 2.3: Performance comparison for 5-way network alignment [17] c⃝ [2015] BMC.

DMC DMR CG
CN SPE MNE CN SPE MNE CN SPE MNE

Proposed 6,621.3 0.901 0.080 6,467.2 0.891 0.090 6,345.4 0.884 0.090
SMETANA 6,336.7 0.869 0.106 6,195.2 0.860 0.114 6,481.2 0.897 0.079

BEAMS 6,083.1 0.825 0.163 6,063.5 0.826 0.162 6,537.6 0.877 0.111
NetCoffee 5,127.2 0.757 0.206 5,084.1 0.750 0.213 4,944.1 0.724 0.239
IsoRankN 4,069.1 0.644 0.268 3,916.7 0.623 0.284 3,860 0.612 0.291

Proposed (all 8 species) 4,116 0.961 0.034 3,473.7 0.930 0.059 3,689.5 0.945 0.043
SMETANA (all 8 species) 3,686.7 0.920 0.066 3,348.9 0.907 0.075 3,785.6 0.960 0.031

BEAMS (all 8 species) 2,897.9 0.905 0.095 3,054.7 0.901 0.099 3,475.1 0.989 0.011
NetCoffee (all 8 species) 3,300.8 0.837 0.136 3,331.8 0.822 0.148 3,317.8 0.800 0.172
IsoRankN (all 8 species) 2,002.8 0.569 0.284 1,775.8 0.542 0.303 2,161.6 0.536 0.303

Table 2.4: Performance comparison for 8-way network alignment [17] c⃝ [2015] BMC.
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Figure 2.3: The total number of conserved orthologous interactions (COI) and conserved
interactions (CI) [17] c⃝ [2015] BMC.

network alignment benchmark and compared it to other leading algorithms. The evaluation

results are summarized in Table 2.2, 2.3, and 2.4, which show the average CN, SPE, and

MNE of various network alignment algorithms.

As we can see in Table 2.2, in most cases, the proposed algorithm yields a significantly

higher CN and SPE compared to other algorithms, which shows that the algorithm is ca-

pable of finding conserved nodes with both high sensitivity and specificity. Furthermore,

the mean normalized entropy (MNE) is also much lower, indicating that the proposed al-

gorithm yields network alignment results that are more functionally coherent. This table

shows that BEAMS yields higher CN for the CG dataset, although its SPE is lower and

its MNE is higher than the proposed method. Both SMETANA and the proposed algo-

rithm shows similar performance on the CG dataset, but we can also see that the proposed

algorithm consistently outperforms SMETANA on the DMC/DMR datasets.

Multiple network alignment results obtained using the 5-way alignment dataset and

the 8-way alignment dataset show similar trends. Tables 2.3 and 2.4 show that, in most

cases, our proposed algorithm outperforms other algorithms with higher CN, higher SPE,

and lower MNE. For multiple networks alignment, we further compared different net-

work alignment algorithms based on their capability of predicting equivalence classes that

22



Proposed SMETANA BEAMS NetCoffee IsoRankN
0

500

1000

1500

2000

2500

 

 

 5 species
 4 species
 3 species
 2 species
 1 species

(a) DMC

Proposed SMETANA BEAMS NetCoffee IsoRankN
0

500

1000

1500

2000

2500

 

 

 5 species
 4 species
 3 species
 2 species
 1 species

(b) DMR

Proposed SMETANA BEAMS NetCoffee IsoRankN
0

500

1000

1500

2000

2500

 

 

 5 species
 4 species
 3 species
 2 species
 1 species

(c) CG

Proposed SMETANA BEAMS NetCoffee IsoRankN
0

3000

6000

9000

 

 

(d) DMC

Proposed SMETANA BEAMS NetCoffee IsoRankN
0

3000

6000

9000

 

 

(e) DMR

Proposed SMETANA BEAMS NetCoffee IsoRankN
0

3000

6000

9000

 

 

(f) CG

Figure 2.4: Equivalence class coverage for 5-way network alignment: (a) DMC; (b) DMR;
(c) CG, and node coverage for 5-way network alignment: (d) DMC; (e) DMR; (f) CG [17]
c⃝ [2015] BMC.

span all networks, since one of the main goals of multiple network alignment is to find

functionally homologous proteins that are conserved in the networks of all target species.

Simulation results show that, in most cases, our proposed method also yields much higher

CN and SPE as well as lower MNE for equivalence classes that span all networks.

Next, we compared the number of conserved (orthologous) interactions identified by

different network alignment algorithms. As Figure 2.3 shows, the proposed method was

able to identify the largest number of conserved interactions as well as conserved orthol-

ogous interactions in most cases, resulting in higher CI and COI. The performance of

SMETANA was comparable to the proposed method, while other algorithms typically

resulted in lower CI and COI. It is worth noting that more than 95% of the conserved

interactions that were detected by our proposed network alignment algorithm were be-

tween correct equivalence classes (i.e., conserved orthologous interactions). This certainly
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Figure 2.5: Equivalence class coverage for 8-way network alignment: (a) DMC; (b) DMR;
(c) CG, and node coverage for 8-way network alignment: (d) DMC; (e) DMR; (f) CG [17]
c⃝ [2015] BMC.

shows that our method can effectively detect biologically meaningful conserved interac-

tions through network alignment.

We also analyzed the overall coverage of the predicted alignment results for the 5-

way and 8-way network alignments. The results are shown in Figure 2.4 for the 5-way

network alignment and in Figure 2.5 for the 8-way network alignment. For the 5-way

network alignment, we can see that around 40% of the equivalence classes predicted by

the proposed method contained nodes from all 5 networks. SMETANA shows a similar

level of coverage, while for the remaining algorithms, only about 30% of the predicted

equivalence classes included nodes from all 5 networks. The overall node coverage also

shows similar trends. The 8-way alignment results summarized in Figure 2.5 show that

the proposed algorithm can effectively find equivalence classes with good coverage, which

include nodes from a large number of networks. For example, we can see that around 40%
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Algorithms Pairwise 5-way 8-way Average
Proposed 117.8 273.1 178.7 189.8

SMETANA 6.9 58.0 70.7 45.2
BEAMS 42.4 134.8 333.8 170.3

PINALOG 77.1 · · 77.1
NetCoffee · 132.7 225.7 179.2
IsoRankN 1083.7 3326.1 2694.8 2368.2

Table 2.5: Mean computation time for aligning PPI networks in the NAPAbench datasets
(in seconds) [17] c⃝ [2015] BMC.

of the equivalence classes predicted by the proposed method contained nodes from all 8

networks.

Table 2.5 shows the mean computation time of the respective algorithms for aligning

the network families in the NAPAbench datasets. As we can see in Table 2.5, SMETANA

requires the least amount of time for aligning the networks in NAPAbench, while Iso-

RankN needs the most computation time. In our simulations, we observed that NetCoffee

runs relatively fast, although its computation time varies significantly depending on the

network structure. For example, it took much longer to align networks in the DMR dataset

using NetCoffe, compared to networks in the DMC or CG datasets.

For further evaluation, we performed additional experiments using real PPI networks

in IsoBase. Table 2.6 shows the pairwise network alignment performance of the tested

algorithms for several PPI network pairs. As we can see in this table, the proposed algo-

rithm consistently performs fairly well in all cases, outperforming the other algorithms.

We can make similar observations in Table 2.7, which summarizes the performance eval-

uation results for aligning 3 PPI networks. The proposed algorithm attains high CN, high

SPE, and low MNE across all cases, showing that it can effectively compare and accu-

rately align real PPI networks. BEAMS shows good performance on multiple alignment

of real networks that is comparable to the proposed method, with a slightly lower SPE
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H.sa-S.ce D.me-S.ce C.el-S.ce
CN SPE MNE CN SPE MNE CN SPE MNE

Proposed 1307 0.689 0.310 1725 0.727 0.277 1543 0.796 0.196
SMETANA 1190 0.671 0.331 1579 0.709 0.295 1443 0.771 0.222

BEAMS 1306 0.649 0.347 1636 0.675 0.320 1499 0.742 0.247
PINALOG 1100 0.682 0.324 1368 0.722 0.289 640 0.737 0.266
IsoRankN 1367 0.765 0.238 1641 0.777 0.230 1458 0.843 0.155

Node Similarity 1486 0.740 0.259 1832 0.779 0.224 1670 0.831 0.163
D.me-H.sa D.me-C.el C.el-H.sa

CN SPE MNE CN SPE MNE CN SPE MNE
Proposed 2681 0.724 0.279 2714 0.855 0.146 1995 0.771 0.224

SMETANA 2274 0.671 0.331 2458 0.827 0.175 1684 0.737 0.255
BEAMS 2612 0.658 0.338 2738 0.808 0.192 1941 0.691 0.300

PINALOG 1172 0.604 0.412 672 0.689 0.317 482 0.677 0.325
IsoRankN 2635 0.759 0.246 2488 0.851 0.150 1881 0.783 0.216

Node Similarity 2932 0.750 0.251 2897 0.875 0.125 2185 0.770 0.227

Table 2.6: Pairwise network alignment results for real PPI networks [17] c⃝ [2015] BMC.

D.me-C.el-H.sa S.ce-C.el-H.sa S.ce-D.me-C.el S.ce-D.me-H.sa
CN SPE MNE CN SPE MNE CN SPE MNE CN SPE MNE

Proposed 4,331 0.705 0.289 3,077 0.709 0.281 3,581 0.746 0.247 3,637 0.672 0.326
SMETANA 3,871 0.663 0.331 2,625 0.657 0.333 3,227 0.714 0.279 3,108 0.616 0.380

BEAMS 4,354 0.676 0.316 3,084 0.671 0.320 3,606 0.727 0.267 3,629 0.627 0.366
NetCoffee 1,471 0.552 0.451 1,234 0.575 0.426 1,477 0.593 0.414 1,877 0.540 0.465
IsoRankN 4,423 0.717 0.279 3,131 0.711 0.282 3,464 0.749 0.245 3,752 0.684 0.313

NodeSimilarity 4,775 0.746 0.248 3,457 0.737 0.256 3,920 0.798 0.197 4,132 0.719 0.278
Proposed

(all 3-species) 3,926 0.702 0.290 2,387 0.724 0.265 2,624 0.715 0.271 2,540 0.681 0.315

SMETANA
(all 3-species) 3,442 0.671 0.323 2,106 0.677 0.312 2,378 0.685 0.301 2,225 0.630 0.363

BEAMS
(all 3-species) 3,867 0.687 0.304 2,277 0.711 0.278 2,573 0.718 0.272 2,441 0.672 0.318

NetCoffee
(all 3-species) 747 0.518 0.478 578 0.528 0.465 713 0.538 0.462 1,167 0.516 0.489

IsoRankN
(all 3-species) 3,757 0.753 0.241 2,323 0.775 0.215 2,470 0.732 0.258 2,510 0.726 0.267

Table 2.7: Multiple network alignment results for real PPI networks (for 3 species) [17]
c⃝ [2015] BMC.

and a slightly higher MNE. Additionally, although BEAMS and IsoRankN achieve higher

CN in some cases, the proposed method consistently yields higher CN than these methods
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with comparable SPE and MNE when we consider multiple network alignment results for

regions that are conserved across all networks. Another observation we can make in Ta-

ble 2.6 is that IsoRankN performs very well on real PPI networks compared to the other

more recent algorithms. This is especially interesting, if we consider the fact that the per-

formance of IsoRankN lagged behind the other algorithms according to the large-scale

evaluations using NAPAbench. One possible explanation is that, for constructing the net-

work alignment, IsoRankN relies on node similarity (i.e., sequence similarity in this case)

more strongly compared to the other algorithms. In order to find out whether this is indeed

a plausible explanation, we performed network alignment experiments solely using node

similarity scores (i.e., without considering network topology), where we constructed the

network alignment in a greedy manner by iteratively adding protein pairs with the highest

node similarity scores. The alignment results are shown in Tables 2.6 and 2.7 right be-

low the results for IsoRankN (labeled as “Node Similarity”). Surprisingly, these results

show that this simple greedy network alignment approach that uses node similarity alone

outperforms IsoRankN in most cases and surpasses all the other algorithms in all cases.

In fact, currently available PPI networks are known to be very incomplete and these net-

work typically contain a large number of isolated nodes. They are suspected to include

a large number of spurious interactions while still missing many potential protein-protein

interactions [50, 51]. Furthermore, only a small proportion of proteins in these PPI net-

works have reliable functional annotations (e.g., according to KEGG orthology), making

it difficult to reliably assess the quality of a predicted network alignment. As a result, for

current PPI networks, utilization of topological similarity between networks may not be

necessarily helpful for improving the overall quality of the network alignment across the

entire network. Moreover, since only a few large real PPI networks are available at the

moment, we risk overtraining network alignment algorithms if they are mainly evaluated

solely based on real PPI networks.
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(a) Pairwise network alignment.
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(b) Multiple network alignment (for 3 species).

Figure 2.6: Computation time for aligning real PPI networks (in seconds) [17] c⃝ [2015]
BMC.

Figure 2.6 shows the computation time for aligning the PPI networks in IsoBase.

SMETANA required the least computation time for pairwise network alignment and Net-

Coffee was the fastest among all for aligning the PPI networks of 3 species. Although

IsoRankN yielded accurate alignment results for real PPI networks in IsoBase, it also re-

quired the largest amount of computation time in most cases. Figure 2.6 shows that our

proposed network alignment algorithm requires relatively longer running time compared

to other algorithms, in exchange for the improved alignment accuracy.

2.2.4 Conclusions

In this subchapter, we proposed a novel network alignment algorithm based on a

context-sensitive random walk model. The CSRW model provides an effective mathe-

matical framework for comparing different biological networks and quantifying the node-

to-node correspondence between nodes that belong to different networks. In our proposed

method, we combined the CSRW model with a restart scheme, where the restart proba-

bility is automatically adjusted based on the characteristics of the networks under com-

parison. Furthermore, the proposed network alignment algorithm employs adaptive prob-

abilistic consistency transformation, where the PCT is adaptively activated or deactivated
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based on the overall structure of the given networks. As we have shown through extensive

performance evaluations based on biologically realistic PPI networks in NAPAbench as

well as real PPI networks in IsoBase, the novel network alignment algorithm proposed

in this subchapter can significantly improve the overall accuracy of pairwise as well as

multiple network alignment.

2.3 Network querying through the context-sensitive random walk model

2.3.1 Background and motivtion

Protein-protein interaction (PPI) plays pivotal roles in understanding biological sys-

tems. Diverse functional modules in cells, such as signaling pathways and protein com-

plexes, involve numerous proteins and their functions are governed by the intertwined

interactions among these proteins. For this reason, to better understand the functions and

roles of proteins in cells, it is critically important to investigate how groups of proteins

collaborate with each other to perform certain biological functions and achieve common

goals, in addition to studying the functions of individual proteins. Recent advances in tech-

nologies for high throughput measurement of protein-protein interactions have enabled

genome-scale studies of protein interactions, and systematic analyses of the available PPI

networks may reveal new functional network modules and unveil novel functionalities of

the proteins that are involved in such modules. Recent investigations of PPI networks

show that functionally important network modules (e.g., molecular complexes and path-

ways) are often well conserved across networks of different species [9, 24]. These ob-

servations clearly point to comparative network analysis [10] as a promising solution for

effectively analyzing large-scale PPI networks, detecting common functional modules that

are embedded in the networks, and predicting the functions of proteins that comprise these

modules.

Network querying is one possible way of comparatively analyzing biological networks,
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which can be especially useful when prior knowledge of functional modules is available

for a given species. As implied in its name, network querying aims to find out whether

a target network (typically, belonging to another species) contains network modules that

resemble the module that is being used as the query [10]. This provides an efficient way

of transferring knowledge between species, since we could use computational means to

predict potential network modules in a new (or less-studied) species that may have sim-

ilar functions, structures, and underlying mechanisms to well-studied modules in other

species.

Several network querying algorithms have been proposed [11, 25, 52, 53, 54, 55, 56,

57, 58]. PathBLAST [52] is one of pioneering network querying algorithms, but it can

search only linear pathways and the computational complexity limits the size of the query

network. QPath [53] can search much longer pathways than PathBLAST and QNet [25]

can search both linear pathways and tree structure, but both algorithms still requires high

computational complexity and searching capability is limited to either a pathway or a tree.

PathMatch [54] solves a network querying problem by finding the longest weighted path in

a directed acyclic graph (target network) and GraphMatch [54] finds highest scoring sub-

graphs in a target network using an exact algorithm. SAGA [55] solves an approximated

graph matching based on the fragment index, where it is the index on a small substructure

of graphs in a database, and SAGA employs a flexible model for node gaps/mismatches

and network structural variations. NatalieQ [56] identifies the querying results by solving

the integer linear programming through Lagrangian relaxation combined with a branch-

and-bound approach. TORQUE [57] proposed a topology-free network querying algo-

rithm. That is, it only requires a set of proteins in the query network and it does not

necessary to provide the topological structure of the query network. TORQUE finds a

connected set of matching proteins through a dynamic and integer linear programming

based on a sequence similarity of proteins. RESQUE [11] estimates the node-to-node cor-
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respondence through a semi-Markov random walk (SMRW) model[14]. Then, RESQUE

iteratively removes less relevant nodes in the target network and identifies the best match-

ing subnetwork through either a Hungarian method or identifying the largely connected

subnetwork. Corbi [58] estimates a matching probability of nodes in the query and target

network through a conditional random field (CRF), and identifies the matching subnetwork

through iterative bi-directional mapping.

Most of the aforementioned network querying methods consider both node similarity

and topological similarity between the query and the target networks to detect matching

subnetworks in the target network. Node similarity between nodes that belong to differ-

ent networks is typically measured based on sequence similarity. Topological similarity

between (sub)networks are measured in various ways to capture the molecular interaction

patterns that are conserved across networks. Incorporating both types of similarities has

been shown to be crucial in making biologically relevant predictions about conserved func-

tional modules [9, 10, 24, 59]. However, one important aspect of network module detection

that is often neglected in network querying is that such modules are often well separated

from the rest of the network. In fact, this separability has played critical roles in “non-

comparative” network analysis methods that aim to detect modules or sub-communities in

a given network [60, 61, 62], since molecules in a functional module tend to be densely

connected to other molecules in the same module but loosely connected to nodes that are

not part of the module. Although identifying densely connected subnetwork modules is

not the main objective of network querying, explicitly incorporating separability criterion

into comparative network analysis methods has strong potentials to enhance the quality of

the predictions [63].

In this subchapter, we propose a novel network querying algorithm called SEQUOIA

(Significance Enhanced QUerying Of InterAction networks). The proposed algorithm is

built on the following important concepts: (i) effective estimation of node correspondence
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– or overall functional similarity between nodes in different networks – by sensibly com-

bining sequence similarity and interaction pattern similarity through a random walk model;

and (ii) minimization of network conductance of potential network modules, thereby iden-

tifying matching modules in the target network that are well separated from the rest of the

network. In our proposed algorithm, we first estimate the node correspondence based on

a context-sensitive random walk model [16, 17], and select a seed network based on the

estimated node correspondence scores. Then, the seed network is iteratively extended by

adding the nodes that maximally reduce the conductance of the subnetwork. Finally, the

significance enhanced querying result is achieved by keeping the nodes with acceptable ex-

tension reward scores, which are updated for every node at each extension step. Through

extensive evaluations based on real biological complexes, we show that SEQUOIA can re-

markably enhance the biological significance of the network querying results by estimating

the node correspondence based on the CSRW model and minimizing the conductance of

matching network modules.

2.3.2 Methods

Suppose that we have a query protein-protein interaction (PPI) network represented

by a graph GQ = (VQ, EQ), which has a set of nodes VQ = {v1, v2, ...} and set of edges

EQ = {ei,j}. A protein in the query network is represented as a node vi ∈ VQ in the graph

GQ and the interaction between two proteins vi and vj is represented by an edge ei,j , whose

weight wi,j reflects the strength (or confidence) of the interaction. Similarly, suppose we

are also given a target PPI network represented by a graph GT = (VT , ET ). We define the

size of a network as the number of nodes in the given network, hence the size of the query

network is |VQ| and that of the target network is |VT |. Typically, in a network querying

problem, the size of the target network is significantly larger than the query network (i.e.,

|VQ| ≪ |VT |). We assume that a pairwise node similarity score s (vq, vt) is available
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Figure 2.7: Illustration for the query network and conserved subnetwork in the target
network. Gray colored nodes in the target network are irrelevant to the query network.
Pink colored node is deleted in the target network, and blue colored node is inserted in the
target network. Note that the inserted node in the target network is deleted in the query
network, and vice versa [18] c⃝ [2017] BMC.

∀vq ∈ VQ and ∀vt ∈ VT , reflecting the molecular level similarity between the proteins in

the query network and the target PPI network. In this study, we use the BLAST bit score as

the pairwise node similarity score as in most network querying and alignment algorithms.

The main objective of network querying is to find the conserved subnetwork ĜT =(
V̂T , ÊT

)
within the target PPI network GT = (VT , ET ) that bears the largest overall

functional similarity to the given query network GQ. Therefore, we can formulate the

network querying problem as the following optimization problem:

Ĝ∗
T = argmax

ĜT ∈GT

f
(
ĜT ,GQ

)
, (2.8)

where GT is the set of all possible subnetworks of the target PPI network, and f (Gx,Gy)

is a function that measures the overall functional similarity between two networks Gx and

Gy.

The network querying problem can be reformulated as a subgraph isomorphism prob-
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lem, whose goal is to find a bijection between two graphs. In order to find a one-to-one

mapping, deleted nodes can be modeled as dummy nodes so that an inserted node in the

query network can be mapped to a dummy node in the target network, and vice versa.

The subgraph isomorphism problem is known to be NP-complete [64], hence the exis-

tence of a polynomial time algorithm for solving the problem is unknown. Furthermore,

it is also not straightforward to quantitatively estimate the overall functional similarity

f (Gx,Gy) between two networks Gx and Gy in such a way that is biologically meaningful.

As a result, it is practically challenging to effectively formulate the optimization prob-

lem in (2.8) and solve the problem for large-scale networks in a computationally efficient

manner [11, 25, 57]. A reasonable way to estimate this functional similarity is to de-

fine f (Gx,Gy) by sensibly combining the node similarity and the topological similarity

between the networks under comparison [10]. Given a reasonable f (Gx,Gy), heuristic

optimization schemes may have to be employed to make the optimization problem (2.8)

computationally tractable.

Before computing the node correspondence scores based on the CSRW model, we

perform two pre-processing steps. First, we reduce the target network by removing poten-

tial non-homologous nodes. Specifically, we remove every node vt in the target network

whose node similarity s (vq, vt) never exceeds a given threshold Th for any of the query

nodes vq ∈ VQ. In this study, we set the threshold Th as 0, such that a node is kept in the

target network if it has at least one query node with nonzero similarity score. Removing

target nodes that do not have any homologous node in the query network can significantly

reduce the computation time as well as the memory requirement. Second, since removing

non-homologous nodes may make the target network disconnected, we insert a pseudo-

edge between nodes that are likely to share similar functionalities, motivated by the fact

that proteins with direct interactions are more likely to share similar functionalities [65].

For this purpose, we assumed that any two nodes in the target network are likely to share
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(a) Query and target network including non-
homologous nodes. Gray colored nodes rep-
resent the non-homologous nodes.
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(b) Ill-connected target network after remov-
ing non-homologous nodes.

Figure 2.8: Example for the pre-processing: removing non-homologous nodes [18]
c⃝ [2017] BMC.
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(a) Before inserting pseudo edges: pink col-
ored proteins in the target network share the
common potential homologous protein (yel-
low colored) in the query network.

���������	
�� �
��������	
��

(b) Target network with pseudo edges. Red
colored edges are inserted pseudo edges be-
tween two proteins having a common poten-
tial homologous node in the query network.

Figure 2.9: Example for the pre-processing: inserting pseudo edges [18] c⃝ [2017] BMC.

similar functionalities and may potentially have a direct interaction if they have a common

node in the query network with high node similarity. However, to refrain from inserting

too many false-positive pseudo edges, we only insert a pseudo edge if the two nodes under

consideration belong to different subnetworks that are disconnected from each other.

After pre-processing the target network, the CSRW model is used to estimate the cor-

respondence between nodes in the query and the target networks. The resulting node
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correspondence score matrix C is normalized to obtain the normalized score matrix C̄

using the normalization method proposed in [13]:

C̄ =
1

2
[JL ·C+C · JR] . (2.9)

The matrix C̄ is a |VQ| × |VT | dimensional matrix containing the normalized node corre-

spondence scores, JL is a |VQ|× |VQ| dimensional diagonal matrix with the diagonal term

JL (q, q) = 1
/∑|VT |

t=1 c (vq, vt), and JR is a |VT | × |VT | dimensional diagonal matrix with

the diagonal term JR (t, t) = 1
/∑|VQ|

q=1 c (vq, vt). This normalization step aims to estimate

the relative significance between corresponding nodes, which has been shown to be useful

for comparing networks of different size [13]. Based on the normalized correspondence

score C̄, we iteratively select NQ seed nodes in the target network based on the following

rule:

argmin
vt

 ∏
vq∈VQ

(1− c̄ (vq, vt))

. (2.10)

The above selection rule aims to identify the nodes in the target network that have a

large number of highly corresponding nodes in the query network. The score c̄ (vq, vt)

will be close to 1 for a highly corresponding node pair (vq, vt). Therefore, the product∏
vq∈VQ

(1− c̄ (vq, vt)) will approach 0 for a target node vt (i.e., a potential seed node)

that has a large number of query nodes vq ∈ VQ with a high node correspondence score

c̄ (vq, vt). This is based on an assumption that a target node with a larger number of rele-

vant nodes in the query network may be more likely to be involved in similar functions as

the query network compared to a node that has fewer corresponding nodes. After select-

ing the NQ seeds, we find the largest connected subnetwork based on the NQ seed nodes,

which is referred to as the seed network. In this work, we set NQ = |VQ| so that the size

of the seed network does not exceed the size of the query network.
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Once the seed network is obtained, we iteratively extend the network by adding nodes

that can make the extended network well-separated from the rest of the network. To this

aim, we estimate the conductance of the subnetwork and define the extension reward score

for each node as follows. First, given a network G = (VG, EG), suppose that we have a

Gaussian surface enclosing the subnetwork H = (VH, EH) such that H ⊆ G. Then the

conductance φ of the subnetwork H is defined as the number of edges that pass through

the surface divided by the volume of the subnetwork (i.e., the number of edges that are

enclosed by the surface) [66, 67]. The conductance of the subnetwork H is given by

ϕ (H) =
|{ei,j|i ∈ VH, j ∈ VH̄}|
min (vol (VH) , vol (VH̄))

, (2.11)

where H̄ = (VG\VH, EG\EH), and vol (VX ) =
∑

u∈VX

d (u), where d (u) is the degree of

the node u. In a network querying problem, since the conserved subnetwork is typically

significantly smaller than the rest of the target PPI network, the volume of the query-

ing result is also much smaller than the volume of the rest of the target network, i.e.,

vol (VH) ≪ vol (VH̄). Hence, the conductance of the subnetwork H becomes

ϕ (H) =
|{ei,j|i ∈ VH, j ∈ VH̄}|

vol (VH)
=

|{ei,j|i ∈ VH, j ∈ VH̄}|
|{ei,j|i, j ∈ VH}|

. (2.12)

Second, we define the extension reward score for a given node as the number of newly

added neighboring nodes during the extension step. That is, in each extension step, when

we add a new node, all neighboring nodes in the extended subnetwork will get an extra

extension reward score of 1. Based on the extension reward score, we can measure the

contribution of each node towards making the subnetwork dense. A node with a higher

extension reward score interacts with a larger number of newly added nodes, playing a

more significant role in making the subnetwork dense after adding the new nodes.
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Algorithm 1: SEQUOIA network querying algorithm
Data: Query and target network, pairwise node similarity score
Result: Best matching subnetwork in the target network for the given query
begin

1 Data pre-processing: i) Removing non-homologous nodes and ii) Inserting
pseudo-edges

2 Compute the normalized node correspondence C̄ using Eq. (2.9)
3 Select the seed network GS = {VS , ES} using Eq. (2.10)

while |GS | ≤ 2 ·NQ or φcurrent ≤ β · φprevious do
4 Find the set of neighboring nodes N of the network GS
5 Compute the conductance φt for the extended network {VS ∪ vt}, for each

vt, ∀vt ∈ N
6 Find the node vt∗ = argmin

t
φt

7 Extend the network GS , i.e., VS = {VS ∪ vt∗} and
ES = {ES ∪ ei,j} ,∀i ∈ VS , ∀j ∈ vt∗

8 Update the current conductance φcurrent = φt∗

9 Update the extension reward score r (vt) = r (vt) + 1,∀vt ∈ N (vt∗)

end
10 Remove nodes in GS whose extension reward score is 0 while keeping the initial

seed nodes.
end

In each extension step, we add the node which is densely connected to the nodes within

the extending network and loosely connected to the nodes out of the extending network, in

order to minimize the conductance defined in (2.12). We repeat the extension steps until

there is no more neighboring node that can reduce the current conductance by more than 5

percent or until the size of extending network exceeds twice the size of the query network,

whichever occurs first. Once the extension process comes to an end, we remove all nodes

whose extension reward score does not exceed a certain threshold. This is to enhance the

functional coherence of the final querying result, since nodes with fewer interactions are

relatively less likely to share similar functionalities with other neighbors. However, the

original seed nodes are kept in the final result, even if their extension reward score is not

large, since those nodes have high node correspondence to nodes in the query network. In
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this study, we set the threshold for node removal as 0, so that nodes that do not interact

with any of the newly added nodes are removed in the final querying result. The over-

all procedure of the proposed SEQUOIA network querying algorithm is summarized in

Algorithm 1.

2.3.3 Results

To assess the performance of SEQUOIA, we carried out network querying experiments

based on the real PPI networks of three different species – H. sapiens (human), S. cere-

visiae (yeast), and D. melanogaster (fly) – obtained from [68]. PPI networks in [68] were

originally obtained from the STRING database [69], but interactions between proteins

without experimental validation were removed. The human PPI network contains 12,575

proteins and 86,890 interactions, the fly PPI network contains 8,624 proteins and 39,466

interactions, and the yeast PPI network contains 6,136 proteins and 166,229 interactions.

As the query networks, we used protein complexes obtained from [57], comprised of

complexes in three species: H. sapiens, S. cerevisiae, and D. melanogaster. Furthermore,

we expanded the query set by adding the latest version of human complexes obtained

from CORUM [70], and yeast complexes from SGD [71] (as of Jan. 5, 2015). Finally, as

in [57, 11], we selected connected complexes of size 5∼25 and used them as our query

networks (863 complexes in total). We assessed the performance of SEQUOIA based on

the 863 real protein complexes, where 293 human complexes were searched against the

fly PPI network, 289 human complexes were searched against the yeast PPI network, 141

yeast complexes were searched against the human PPI network, and 140 yeast complexes

were searched against the fly PPI network. Since there are only a small number of test

cases for querying fly complexes against human and yeast PPI networks, we excluded

those experiments in this study.

The performance of SEQUOIA was compared against several state-of-the-art algo-
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rithms, which include: RESQUE [11], Corbi [58], NatalieQ [56], HubAlign [34], and

LocalAli [72]. Although HubAlign and LocalAli are global and local network alignment

algorithms, respectively, we used those algorithms to identify conserved subnetworks as

network querying can be viewed as a special case of pairwise network alignment. For

Corbi, we used the default parameters for the gap penalty and set the option for the query

type as 1, which is for general network querying. For HubAlign, we used the default pa-

rameters (i.e., λ = 0.1 and α = 0.7). We also used the default parameter for NatalieQ.

For LocalAli, we set the minimum number of extension (-minext) to 0 and the maximum

number of extension (-maxext) to 25, since the size of the query networks ranged between

5 to 25. Default values were used for other parameters. Since LocalAli identifies multiple

local complexes as its output, we selected the complex with the best score as the querying

result of LocalAli.

To assess various aspects of the network querying algorithms, we defined several per-

formance metrics. First, we used the matching score to count the number of matches for

each query and target species pair [73]. Given two biological complexes Q and C, the

matching score is computed based on the Jaccard index between the nodes in the two

biological complexes as follows:

match_score (Q,C) =
|VQ ∩ VC |
|VQ ∪ VC |

, (2.13)

where VX is the set of nodes in the complex X . If the matching score is greater than

the threshold, the two complexes were regarded to be a match. As in [73], we set the

threshold for the matching score as 0.5. To count the number of matches, we used the

known biological complexes as our gold standard reference C = {C1, C2, ..., CN}. Given

the querying result Qi, if there is at least one matching complex Cj in the gold standard

reference, we counted Qi as a match. Then, we report the total number of matches for each
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query and target species pair. That is, given the querying results Q = {Q1, Q2, ..., QM}

for the M query complexes, we count the total number of querying results

|{Qi|match_score (Qi, Cj) ≥ 0.5, ∀Cj ∈ C, ∀Qi ∈ Q}| . (2.14)

Next, we defined two different types of hits that respectively measure: 1) the accuracy

of the obtained querying results and 2) the capability of detecting novel functional network

modules with strong biological significance. The former counts the number of querying

results whose annotation is identical to the functional annotation of the query network so

that it can assess the capability of a given algorithm to identify the conserved functional

modules. The latter counts the number of querying results with strong biological signifi-

cance, regardless of whether or not they have the same functional annotation as the query,

so that it can be used to assess the ability of the network querying algorithm to predict

novel potential functional modules in the target PPI network.

To evaluate the accuracy of the querying results, we picked the most significantly en-

riched GO term of the query network (referred to as the significant GO term). Note that the

most significantly enriched GO term denotes the GO term with the lowest false discovery

rate (FDR) corrected p-value. To this aim, we performed GO enrichment tests for the query

network and the querying result. If the significant GO term in the query is also enriched

in the network querying result and if its FDR corrected p-value is less than a threshold, we

regarded the querying result as a significant hit. However, a higher number of significant

hits do not necessarily imply that the network querying algorithm yields accurate results,

since the querying results may potentially include a large number of functionally irrelevant

proteins (i.e., proteins whose annotation does not include the significant GO term). For

this reason, in order to assess the accuracy of the querying results, we additionally defined

two important performance metrics: the significant specificity (SPE) and the significant
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functionally coherent (FC) hit. Significant SPE is defined as the relative proportion of

the proteins annotated with the significant GO term among the proteins included in the

querying result. Based on this definition, an accurate querying result with fewer irrelevant

proteins will have a higher significant SPE. Significant FC hits were defined as hits that

satisfy the following two conditions: 1) FDR corrected p-value should be less than a cer-

tain threshold, and 2) at least 50% of the proteins included in the querying result should

be annotated with the significant GO term. A network querying algorithm that can yield

a larger number of significant FC hits can be viewed as being more accurate and being

capable of making better predictions that are biologically more significant.

Next, in order to assess the capability of detecting novel potential functional network

modules, we investigated the biological significance of the querying results. To this aim,

we performed the GO enrichment test only for the querying result (i.e., not for the query

network) and selected the GO term with the smallest FDR corrected p-value as the most

significantly enriched GO term. If the FDR corrected p-value of the most significantly

enriched GO term of the querying result is less than a threshold, we regarded the querying

result as a hit. A querying result with a small FDR corrected p-value can be viewed

as being biologically significant, even if the most significantly enriched GO term of the

querying result and that of the query network do not match. As a result, for a given network

querying algorithm, we can assess its capability of detecting potential functional network

modules by measuring the number of hits. Furthermore, we defined the specificity as the

relative proportion of proteins (in the querying result) that are annotated with the most

significantly enriched GO term among all proteins included in the querying result. As

before, we defined a hit as being functionally coherent (FC) – hence called a FC hit – if

the FDR corrected p-value is less than a certain threshold and if more than 50% of the

proteins in the retrieved result are annotated with the most significantly enriched GO term.

We used the latest version of GO::TermFinder [74] for the GO enrichment test, and

42



analyzed the querying results based on three different ontology aspects: 1) cellular com-

ponent (CC, GO:0005575), 2) biological process (BP, GO:0008150), and 3) molecular

function (MF, GO:0003674). In the following, we mainly present the assessment results

based on the ontology aspect of “cellular component”. The ontology and annotation files

for the three species considered in our study have been downloaded from Gene Ontology

Consortium [75, 76] (as of Feb. 9 2015). Then, we removed all GO terms without exper-

imental evidence. That is, we only used GO terms having one of the following evidence

codes: ‘EXP’, ‘IDA’, ‘IPI’, ‘IMP’, ‘IGI’, and ‘IEP’. Additionally, due to the hierarchical

structure of GO terms, certain GO terms are annotated to a large number of proteins, where

such commonly appearing GO terms would not be very informative. In order to use the

GO terms that are informative, we computed the information content (IC) for each GO

term as recommended in [75]. IC is defined as

IC (g) = − log2
|g|

|root (g)|
, (2.15)

where |g| is the total number of proteins with the GO term g, and |root (g)| is the number

of proteins under the root GO term of the GO term g. Note that there are three root GO

terms: cellular component (CC, GO:0005575), biological process (BP, GO:0008150), and

molecular function (MF, GO:0003674). In this study, we only used the GO terms whose

information content is at least 2.

Figure 2.10 shows the number of matches for each query-target species pair. The figure

shows that SEQUOIA yields the largest number of matches among all tested algorithms for

all query-target pairs. When querying human complexes against the fly and the yeast PPI

networks, SEQUOIA clearly outperforms other methods. When querying yeast complexes

against the human and the fly PPI networks, NatalieQ shows comparable performance to

SEQUOIA, although SEQUOIA still yields a larger number of matches compared to all
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Figure 2.10: Number of matches for each query and target species pair (i.e., query species
– target species) [18] c⃝ [2017] BMC.

other methods. Overall, SEQUOIA resulted in 188 matches, which is almost 32 percent

more compared to the number of matches achieved by the next best algorithm, NatalieQ.

Figure 2.11 shows the number of significant hits and significant FC hits for all 863

querying results. As we can see in Figure 2.11a, SEQUOIA yields a larger number of

significant hits compared to other algorithms. This means that SEQUOIA can more accu-

rately identify conserved functional network modules with the significant GO term, (i.e.,

the most significantly enriched GO term in the query network). RESQUE family yielded

similar number of significant hits at the p-value threshold of 0.05, but SEQUOIA outper-

formed both RESQUE-C and RESQUE-M when a smaller p-value threshold was used.

Except for SEQUOIA and RESQUE-C, the number of nodes in the querying result is gen-

erally smaller than that in the query network for other tested algorithms. As a consequence,

many algorithms may fail to identify inserted nodes and yield fewer significant hits.
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(a) Number of significant hits.
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(b) Number of significant FC hits.

Figure 2.11: Number of significant hits and significant functionally coherent (FC) hits for
the 863 query complexes [18] c⃝ [2017] BMC.

Figure 2.11b shows that SEQUOIA yields a larger number of significant FC hits com-

pared to other algorithms. This implies that SEQUOIA produces more accurate querying

results that are functionally more coherent. Compared to SEQUOIA, the number of signif-

icant FC hits for Corbi decreases quickly as the p-value threshold decreases. Interestingly,

although RESQUE family shows similar performance in terms of the number of significant

hits, the number of significant FC hits for RESQUE-C is much smaller than RESQUE-M.

This result shows that using a more sophisticated method to predict the best matching

subnetwork would be needed to obtain better querying results that are functionally more

coherent. In fact, RESQUE-C uses a relatively simple approach to find the best match-

ing subnetwork, which is to find the largest connected subnetwork in the reduced target

network, and this may increase the chances of including a larger number of functionally

irrelevant nodes in the final querying result. SEQUOIA results in higher significant hits as

well as higher significant FC hits by minimizing the network conductance of the matching

subnetwork and filtering out potentially irrelevant nodes based on the extension reward
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Identified nodes Annotated nodes† Significant SPE
SEQUOIA 9,537 2,568 0.269

RESQUE-C 10,213 2,115 0.207
RESQUE-M 7,000 1,941 0.277

Corbi 4,761 1,149 0.241
HubAlign 7,342 1,526 0.208
NatalieQ 5,452 1,745 0.320
LocalAli 6,220 892 0.143

† Annotation corresponding to the most significantly enriched GO term in the query network.

Table 2.8: Significant SPE for the ontology aspect of “cellular component” [18] c⃝ [2017]
BMC.

score.

The number of identified nodes included in the querying results and the number of

nodes annotated with the most significant GO term are summarized in Table 2.8. The

table shows that NatalieQ and RESQUE-M achieve higher significant SPE compared to

SEQUOIA, but it should be noted that SEQUOIA can identify a much larger number of

“annotated nodes” while keeping relatively higher significant SPE compared to other algo-

rithms. The total number of identified nodes is comparable for SEQUOIA and RESQUE-

C, although SEQUOIA results in a much higher significant SPE compared to RESQUE-C.

From the perspective of potential knowledge transfer from a well-studied species to a less-

studied species, the ability to achieve higher significant SPE is critical, as it implies that

the network querying algorithm may be able to annotate the proteins in the querying result

more accurately.

Figure 2.12 shows the number of hits and the number of FC hits for various FDR

corrected p-value thresholds. Feasible hits in each figure correspond to the total number

of query complexes, which is the maximum number of hits that can be achieved. As we

can see in Figure 2.12a, SEQUOIA clearly outperforms other algorithms for various p-

value thresholds. For example, at a p-value threshold of 1E-10, SEQUOIA yields 29%
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Figure 2.12: Number of hits and FC hits for querying 863 biological complexes [18]
c⃝ [2017] BMC.

more hits than RESQUE-C, which is the next best algorithm. These results indicate that

SEQUOIA has stronger potentials to identify novel protein complexes compared to other

state-of-the-art algorithms.

Next, we compared the number of FC hits for different network querying algorithms.

Figure 2.12b shows that SEQUOIA clearly outperforms other algorithms. For example,

SEQUOIA can identify 11% more FC hits than NatalieQ at a p-value threshold of 0.05 and

almost twice as many FC hits compared to RESQUE and NatalieQ at a p-value threshold

of 1E-15. LocalAli and NatalieQ fail to yield querying results in some test cases (i.e., these

algorithms cannot identify any protein node in the target network). LocalAli and NatalieQ

may not perform robustly under certain conditions (e.g., for certain query topology), which

may result in a smaller number of hits. The results in Figure 2.12b show that SEQUOIA’s

performance is more robust compared to many other algorithms, and that SEQUOIA can

more effectively detect conserved network modules with high functional coherence.

Finally, we also evaluated the functional coherence of the querying results for each
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Identified nodes Annotated nodes‡ SPE
SEQUOIA 9,537 5,531 0.580

RESQUE-C 10,213 5,002 0.492
RESQUE-M 7,000 3,856 0.551

Corbi 4,761 2,486 0.522
HubAlign 7,342 3,822 0.521
NatalieQ 5,452 3,324 0.610
LocalAli 6,220 2,170 0.349

‡ Annotation corresponding to the most significantly enriched GO term in the querying result.

Table 2.9: SPE for the ontology aspect of “cellular component” [18] c⃝ [2017] BMC.

algorithm. To this aim, we selected the most significantly enriched GO term in the query-

ing result obtained by each algorithm for each query, and compute the relative proportion

of proteins annotated with the most significantly enriched GO term. The results are sum-

marized in Table 2.9. With the exception of NatalieQ, SEQUOIA achieves the highest

SPE compared to all other algorithms. Although NatalieQ results in the highest SPE, SE-

QUOIA can identify about 66% more annotated nodes (i.e., proteins annotated with the

most significant GO term) compared to NatalieQ, while achieving a comparable SPE. This

indicates that SEQUOIA can effectively identify a larger number of protein nodes that are

functionally coherence than the other tested algorithms.

For RESQUE, we used the MATLAB script version 1.0 and MATLAB version 2014b.

Executable binaries for NatalieQ, HubAlign, and LocalAli were obtained by compiling

their source code using a C++ compiler. For Corbi, we used its R package and tested the

algorithm on Windows. Except for Corbi, all other algorithms were tested on Mac OS

X. All computer simulations were performed on a desktop computer equipped with a 2.4

GHz Intel i7 processor and 8 GB memory. For certain queries, NatalieQ and LocalAli may

require a very long time (which is significantly longer than the average computation time),

and such outliers were excluded when drawing the box plot for readability. As shown in

Figure 2.13, the computation time of SEQUOIA is comparable to that of the RESQUE
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Figure 2.13: Computation time of 863 querying results for each querying algorithm [18]
c⃝ [2017] BMC.

family, but it is much faster compared to other algorithms. On average, SEQUOIA yields

the querying result in less than 0.06 second, and in 98% of the test cases, the algorithm

needs less than a second to find the subnetwork that best matches the query.

2.3.4 Conclusions

In this subchapter, we proposed SEQUOIA, a novel network querying algorithm that

can enhance the biological significance of the query results. In order to identify con-

served subnetwork regions in the target network that are similar to a given query network,

the algorithm compares the two networks and estimates the node correspondence scores

by using the context-sensitive random walk model. Inspired by the pair hidden Markov

model that has been widely used in the comparative sequence analysis, the CSRW model

effectively captures the similarities between graphs by explicitly accounting for poten-

tially inserted/deleted nodes. Based on the estimated CSRW node correspondence scores,
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SEQUOIA identifies high-scoring regions (referred to as the seed networks) in the target

network that bear considerable similarity with the query network. The seed network is

further extended by adding neighboring nodes that reduce the network conductance of the

extended network by the largest amount. This extension step identifies nearby proteins

that are densely connected to other nodes in the potential network module, thereby effec-

tively recruiting proteins that are likely to share similar functions with other proteins in

the module. The final query result is obtained after pruning the matching subnetwork by

removing any irrelevant nodes, thereby enhancing the separability and coherence of the

identified network module. As we have shown through extensive numerical simulations

based on 863 real biological complexes, our network querying algorithm SEQUOIA yields

accurate query results with enhanced biological significance. The source code and datasets

can be downloaded from http://www.ece.tamu.edu/∼bjyoon/SEQUOIA
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3. ESTIMATION OF NODE-TO-NODE CORRESPONDENCE BY MEASURING

THE STEADY-STATE NETWORK FLOW USING A MARKOV MODEL ∗

3.1 CUFID model

In this chapter, we propose a novel probabilistic random walk model for comparing

PPI networks and effectively predicting the correspondence between proteins, represented

as network nodes, that belong to conserved functional modules across the given PPI net-

works. The basic idea is to estimate the steady-state network flow between nodes that

belong to different PPI networks based on a Markov random walk model. The random

walker is designed to make random moves to adjacent nodes within a PPI network as well

as cross-network moves between potential orthologous nodes with high sequence simi-

larity. Based on this Markov random walk model, we estimate the steady-state network

flow – or the long-term relative frequency of the transitions that the random walker makes

– between nodes in different PPI networks, which can be used as a probabilistic score

measuring their potential correspondence. Subsequently, the estimated scores can be used

for detecting orthologous proteins in conserved functional modules through comparative

network analysis.

3.1.1 Problem formulation

Suppose that we have a pair of PPI networks with the graph representations GX =

(U ,D) and GY = (V , E), in which nodes represent proteins in each PPI network (i.e.,

ui ∈ U or vj ∈ V), and edges (dij ∈ D or eij ∈ E) indicate that the corresponding protein

ui (or vi) binds with the protein uj (or vj). The edge weights in the PPI networks can

∗Part of this chapter is reprinted with a permission from “Hyundoo Jeong, Xiaoning Qian, and Byung-Jun
Yoon. Effective comparative analysis of protein-protein interaction networks by measuring the steady-state
network flow using a Markov model. BMC Bioinformatics, 17(Suppl. 13):395, 2016" [77] c⃝[2016] BioMed
Central.
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indicate the strength or confidence of the interactions between the proteins. Given a pair of

nodes across the PPI networks, we assume that the pairwise node similarity score s (ui, vj),

ui ∈ U and vj ∈ V can be computed, for example, based on the sequence similarity

between the proteins. In this study, we utilized BLAST bit scores between proteins as

the pairwise node similarity scores. However, other types of similarity measurements (or

their combinations) could be also used as the pairwise node similarity score in case such

measurements can be easily obtained.

Given a pair of PPI networks GX and GY , one objective of comparative network anal-

ysis is to derive the optimal one-to-one mapping A∗ between nodes in different PPI net-

works. One possible criterion that could be used to find such a mapping is the maximum

expected accuracy (MEA) criterion, which aims to maximize the expected number of cor-

rectly mapped nodes. Provided that we can derive a pairwise node alignment probability

Pr [ui ∼ vj|GX ,GY ], ui ∈ U and vj ∈ V , the optimal one-to-one mapping can be found

by:

A∗ = argmax
A

∑
∀(ui∼vj)∈A

Pr [ui ∼ vj|GX ,GY ] (3.1)

according to the MEA criterion. This MEA approach has been widely used by many

multiple sequence alignment algorithms [36, 38, 39, 41, 40] and it has been shown to be

useful for network alignment [13, 17] and network querying [11] as well.

3.1.2 Motivation and overall approach

Based on the above problem setting, to obtain confident network comparison results,

it is crucial to accurately estimate the pairwise node-to-node correspondences. To obtain

biologically meaningful comparison results, it is necessary that the pairwise node corre-

spondence is proportional to both the pairwise node similarity (i.e., sequence similarity)

and the topological similarity between the subnetwork regions surrounding the nodes in the

respective networks. This is based on the observation that orthologous proteins typically
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have a high level of compositional similarity and often display similar interaction patterns

to their neighboring nodes [9, 24]. To accurately estimate the pairwise node-to-node corre-

spondences by effectively integrating these two different types of similarities, we propose

to utilize the concept of steady-state network flow (i.e., the amount of ‘water’ that flows

through a given channel in the network). Similar concepts have been previously adopted

in various engineering applications to find the solutions to similar assignment problems.

For example, in digital communication systems, the water-filling algorithm [78] is uti-

lized to compute the optimal allocation of resources. Conceptually, it pours ‘water’ into

an OFDM (orthogonal frequency division multiplexing) channel, and the ‘water level’ in

the OFDM channel is utilized to find the optimal solution of the transmit power for each

subcarrier. In digital image processing, the so-called watershed method [79] is used to

find edges or contours of objects in the given image. The watershed method assumes that

‘water’ flows along the image gradient (e.g., intensity differences) and eventually reaches

the local minima so that the ‘water level’ in the image provides the solution for the desired

image segmentation.

In the proposed random walk model called CUFID (Comparative network analysis

Using the steady-state network Flow to IDentify orthologous proteins) model, we mea-

sure the steady-state network flow in an integrated network that is obtained by combining

the PPI network pair to be compared. More specifically, edges are inserted between nodes

in different networks that have positive pairwise node similarity, and the pairwise node

similarity score is assigned as the edge weight. Suppose we pour ‘water’ on the integrated

network and that the amount of water flow is proportional to the edge weight. If a given

pair of nodes in different PPI networks have higher pairwise node similarity and if their

neighboring nodes also have higher pairwise node similarity, there would be a larger water

flow between the pair of nodes in the long run. However, if the nodes have similar topolog-

ical structure (i.e., in terms of the number of interacting nodes in the respective networks)
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Figure 3.1: Illustration of how node correspondence is measured based on the steady-
state network flow. Straight lines represent protein-protein interactions, and dotted lines
indicate pairwise node similarity. In this example, there is a larger steady-state network
flow between the node pair (a,b) than the node pair (a,d) because the node pair (a,b) has
higher pairwise node similarity and as the nodes have similar interacting nodes in the
respective networks. In contrast, although the node pair (a,d) has positive pairwise node
similarity, the neighboring nodes in the respective networks are not similar, which leads to
a smaller steady-state network flow between the nodes (a,d) compared to the flow between
(a,b) [77] c⃝ [2016] BMC.

but if their neighboring nodes are not similar, there will be relatively small water flow

between the pair of nodes. As a result, the water flow between nodes across different PPI

networks provides an intuitive way of measuring the overall similarity of the nodes – or

functional correspondence between the proteins. As will be shown later, the resulting node

correspondence score obtained based on the concept of water flow in the integrated net-

work can serve as an effective building block for constructing an accurate and biologically

meaningful network alignment and querying.

3.1.3 Methods

In order to effectively estimate the node correspondence by integrating both the pair-

wise node similarity and topological similarity using a Markov random walk model, we

first construct the integrated network G = (V,E) by combining GX = (U ,D) and GY =
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Figure 3.2: Illustration for constructing the integrated network from a network pair. Dotted
lines in the left figure indicate the pairwise node similarity, in which the thickness of each
line is proportional to the pairwise node similarity. To construct the integrated network, we
insert an edge between each pair of nodes across different networks if they have positive
pairwise node similarity [77] c⃝ [2016] BMC.

(V , E). Nodes of the integrated network G are the union of the nodes of GX and GY (i.e.,

V = {U ,V}), and edges are the union of the edges in the two networks GX and GY , and ad-

ditional weighted (pseudo) edges P such that P = {ei,j|ui ∈ U , vj ∈ V , s (ui, vj) > st},

(i.e., E = {D, E ,P}). On this integrated network G, we allow the random walker to

randomly move from the current node to any of its neighboring nodes at each time step.

We define two different types of random moves based on their starting and ending points.

First, if the random walker moves from a node in U to a node in U (or from a node in

V to a node in V), we define it as an intra-network random move, as the random walk

takes place in the same PPI network. In this event, the random walker performs a random

movement over the edges representing protein-protein interactions. Second, if the random

walker moves from a node in U to a node in V (or from a node in V to a node in U), we

refer to this as a cross-network random move. In this case, the random walker can transit

across the networks through the pseudo edges. The intra-network random move mainly

aims to capture the topological similarity between the two PPI networks while the cross-
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network random move aims to incorporate the pairwise node similarity between nodes that

originally belong to different PPI networks.

The transition probabilities of the resulting random walker are determined as follows.

Suppose the two networks GX = (U ,D) and GY = (V , E) have weighted edges, where the

respective adjacency matrices are given by:

AX [i, j] =

 dij, (ui, uj) ∈ D

0, otherwise
, (3.2a)

AY [i, j] =

 eij, (vi, vj) ∈ E

0, otherwise
. (3.2b)

First of all, to compute the transition probability of the intra-network random moves,

we transform the edge weighted adjacency matrix into a legitimate stochastic matrix by

normalizing each row. That is, the transition probability of the random walker is propor-

tional to the weight of the edge that connects the node at the current position of the random

walker and the neighboring node (in the same PPI network) to which it wants to move. The

resulting transition probability of any intra-network random move is given by

Pk [i, j] =
1∑

∀j
Ak [i, j]

· Ak [i, j] , k = X,Y. (3.3)

Eq. (3.3) can be rewritten in a simple matrix form, which is given by

PX = D−1
X ·AX and PY = D−1

Y ·AY, (3.4)

where DX is a |U| × |U| dimensional diagonal matrix such that DX [i, i] =
∑
∀j

AX [i, j],

and DY is a |V| × |V| dimensional diagonal matrix such that DY [i, i] =
∑
∀j

AY [i, j].
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Next, suppose that the transition probability of the cross-network random move be-

tween two nodes in different networks is proportional to their pairwise node similarity

score. That is, from the current position of the random walker in a given PPI network,

the random walker is more likely to move to a node in the other PPI network with higher

pairwise node similarity. This will increase the ‘network flow’ between nodes that have

higher node similarity. The transition probability for a cross-network random move from

a node ui in GX to a node vj in GY is then given by

Pr [vj|ui] = PX→Y [i, j] =
1∑

∀vj
s [ui, vj]

· s [ui, vj] . (3.5)

In a matrix form, Eq. (3.5) can be written as:

PX→Y = D−1
S · S, (3.6)

where S is a |U| × |V| dimensional matrix for the pairwise node similarity score, and DS

is a |U| × |U| dimensional diagonal matrix such that DS [i, i] =
∑
∀j

s [i, j]. Similarly, the

transition probability of a cross-network random move from a node vi in GY to a node uj

in GX is given by:

Pr [uj|vi] = PY→X [i, j] =
1∑

∀uj

sT [vi, uj]
· sT [vi, uj] , (3.7)

where sT [vi, uj] is a [vi, uj]-th element of the transposed matrix of S. Eq. (3.7) can be

written in a matrix form as follows:

PY→X = ST ·D−1
ST , (3.8)
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where ST is a |V|×|U| dimensional matrix for the pairwise node similarity score, and DST

is a |U| × |U| dimensional diagonal matrix such that DST [i, i] =
∑
∀j

sT [i, j]. In fact, the

transition probability matrices PX→Y and PY→X are normalized pairwise node similarity

score matrices in the row-wise and column-wise manner.

Finally, we can get the (|U|+ |V|)× (|U|+ |V|) dimensional overall transition proba-

bility matrix for the Markov random walker over the integrated network G, given by

P =

 PX PX→Y

PY→X PY

 . (3.9)

Based on the proposed random walk protocol, the random walker transits more fre-

quently between the pair of nodes (ui, vj) if the node ui and the node vj have a higher

pairwise node similarity and also if their neighboring nodes also have higher pairwise

node similarity (i.e., higher topological similarity). So, as a result, the random walker will

spend more time on an edge that connects a pair of nodes (ui, vj), ui ∈ U and vj ∈ V

as their overall similarity (or node correspondence) increases. Hence, we can effectively

estimate the pairwise node alignment probability – which should be proportional to the

desired node correspondence – by measuring the steady-state network flow through each

(pseudo) edge in P such that P = {ei,j|ui ∈ U , vj ∈ V , s (ui, vj) > st}

To compute the steady-state network flow, we first compute the steady-state proba-

bility π (x) of the random walker for every node x ∈ U ∪ V in the integrated network.

This is equivalent to the long-run proportion of time that the random walker spends at a

given node x. The steady-state probability is equivalent to the eigenvector of the tran-

sition probability matrix P that corresponds to unit eigenvalue. This eigenvector, hence

the steady-state probability, can be easily obtained through the power method, as the tran-

sition probability matrix P will be generally sparse for real PPI networks [13, 17]. The
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Figure 3.3: Illustration of the steady-state network flow. Note that the red colored arrows
indicate the intra-network random moves, while the blue colored arrows represent the
cross-network random moves [77] c⃝ [2016] BMC.

steady-state probability π (x) can be viewed as the amount of ‘water’ at the node x in the

long-run, and since the amount of the water flow is proportional to the edge weight, we

can obtain the steady-state network flow along the edge (ui, vj) as follows:

c (ui, vj) = π (ui) · Pr [vj|ui] + π (vj) · Pr [ui|vj]

= π (ui) · s(ui,vj)∑
∀vj

s(ui,vj)
+ π (vj) · s(ui,vj)∑

∀ui
s(ui,vj)

.
(3.10)

This equation can be rewritten in a matrix form as follows:

C = πX ·PX→Y +PT
Y→X · πY, (3.11)

where C is a |U|× |V| dimensional matrix for the steady-state network flow (i.e., pairwise

node correspondence scores), πX is a |U| × |U| dimensional diagonal matrix such that

πX [i, i] = π (ui), ui ∈ U , and πY is a |V| × |V| dimensional diagonal matrix such that

πY [i, i] = π (vj), vj ∈ V .
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We briefly compare the major differences between CSRW model [16] and CUFID

model [77]. First, although we designed that the staying time of the random walker is

proportional to the node-to-node correspondences, the random walker in the CSRW model

stays longer at the pair of potential matching nodes, but the random walker spends more

time at the pseudo edge connecting the potential matching nodes in the CUFID model.

��������	 ��������


(a) CSRW model.

��������	 ��������


(b) CUFID model.

Figure 3.4: Illustration of the main difference between CSRW model and CUFID model.
Node correspondence can be estimated by measuring the long-run proportion of time that
the random walker stays at the blue colored node pair (CSRW models) or blue colored
edges (CUFID model).

Second, since constructing the transition probability matrix for the random walker is

the main bottleneck to compute node-to-node correspondences, we briefly compare the

memory requirement to construct the transition probability matrix for each model. Sup-

pose that we have two networks and each has M and N nodes, respectively. The memory

complexity for each method is summarized in Table 3.1
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CSRW model CUFID model
Memory complexity O (|M ·N | × |M ·N |) O (|M +N | × |M +N |)

Table 3.1: Memory complexity to construct a transition probability matrix.

3.2 Network alignment through the CUFID model

In this subchapter, we propose a novel network alignment algorithm, called CUFID-

align (Comparative network analysis Using the steady-state network Flow to IDentify

orthologous proteins). The algorithm estimates the node correspondence by measuring the

steady-state network flow of a random walk model over an integrated network of the given

PPI networks. To accurately estimate the node correspondence based on the steady-state

network flow, in a way that effectively captures the biological significance, we adopt the

CUFID model such that the relative frequency that the random walker makes transitions

between a pair of nodes in different PPI networks is proportional to the pairwise node

similarity and the topological similarity between the surrounding network regions. The

proposed scheme effectively captures the functional correspondence between nodes across

different networks and the estimated node correspondence scores can lead to accurate

network alignment results, as will be demonstrated through performance assessment based

on real PPI networks.

3.2.1 Methods

Suppose that we have a pair of PPI networks GX = (U ,D) and GY = (V , E). To obtain

biologically meaningful alignment results, we first estimate node-to-node correspondences

C through Eq. (3.11). Then, as in SMETANA [13] and SMETANA-CSRW [17], we utilize

the following probabilistic consistency transformation (PCT) given by:

C̃ = α ·C+ (1− α) ·PX ·C ·PT
Y, (3.12)
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to update the estimated node correspondence scores. The above PCT assumes that, given

a pair of nodes, if their neighboring nodes have high correspondence, the node pair has

increased chance to be aligned. That is, updating the estimated node correspondence score

by utilizing the neighbor’s node correspondence could increase the overall accuracy of the

node correspondence score. However, the PCT also has the potential risk of creating or

increasing false positive node correspondence. That is, some node pairs with zero (or in-

significant) correspondence scores can have positive (or increased) node correspondence

scores after performing the PCT if they have neighboring nodes with positive correspon-

dence scores, because PCT propagates the node correspondence scores to neighboring

nodes. Therefore, to suppress false positive node alignments, we only keep the trans-

formed scores that are larger than the 90 percentile (= β). Furthermore, we also keep the

original scores c [i, j] even if they are smaller than the threshold β. That is,

c̄ [i, j] = g (c̃ [i, j]) =

 c̃ [i, j] , if c̃ [i, j] ≥ β or c [i, j] > 0

0, otherwise
. (3.13)

After transforming and removing node correspondence scores lower than a specific thresh-

old using Eq (3.13), we obtain the final node correspondence scores C̄, which will be used

to construct the network alignment.

After computing the transformed node correspondence score C̄, we use the scores to

construct the network alignment based on the MEA criterion, based on the assumption

that the pairwise node alignment probability is proportional to the obtained node corre-

spondence score:

Pr [ui ∼ vj|GX ,GY ] ∝ c̄ (ui, vj) . (3.14)

Finally, to find the optimal solution of Eq. (3.20) based on the derived pairwise node

alignment probability, we construct the maximum weighted bipartite matching (MWBM)
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between GX and GY , using an efficient implementation of the MWBM algorithm included

in the GAIMC library [80]. The overall procedure of the proposed network alignment

algorithm is summarized in Algorithm 2.

Algorithm 2: CUFID-align
Data: A pair of PPI networks (GX and GY ) and pairwise node similarity scores
Result: One-to-one alignment A between proteins in different PPI networks
begin

1 A = ∅ // Empty alignment
2 Construct the transition probability matrix using Eq. (3.9)
3 Compute the node correspondence C using Eq. (3.11)
4 Compute the transformed node correspondence C̄ using Eqs. (3.12) and (3.13)
5 Construct the maximum weighted bipartite matching between GX and GY based

on C̄
end

3.2.2 Results

We assessed the performance of CUFID-align based on the IsoBase dataset [42], which

includes PPI networks of five different species: H. sapiens (human), M. musculus (mouse),

D. melanogaster (fly), C. elegans (worm), and S. cerevisiae (yeast). PPI networks in

IsoBase dataset were constructed by integrating five different databases: BioGRID [43],

DIP [44], HPRD [45], MINT [46], and IntAct [47]. In IsoBase, the H. sapiens network

has 22,369 proteins and 43,757 interactions; the M. musculus network has 24,855 pro-

teins and 452 interactions; the D. melanogaster network has 14,098 proteins and 26,726

interactions; the C. elegans network has 19,756 proteins and 5,853 interactions; and the S.

cerevisiae network has 6,659 proteins and 38,109 interactions.

We assessed the quality of the predicted network alignment based on the following

metrics: correct nodes (CN), specificity (SPE), gene ontology consistency (GOC) scores,
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conserved interactions (CI), conserved orthologous interactions (COI), and computation

time. Note that CN, SPE, and GOC scores assess the biological significance of the align-

ment, and CI and COI assess the topological quality of the alignment. If the aligned nodes

have the same functional annotation based on the KEGG Orthology (KO) group annota-

tions [48], we considered the node alignment to be correct. CN counts the total number

of correctly aligned nodes in a given network alignment. SPE is the relatively ratio of the

total number of correctly aligned node pairs to the total number of aligned node pairs.

To further assess the functional consistency of a given network alignment A, we used

GOC scores, which can be computed by

GOC (A) =
∑

∀(ui∼vj)∈A

goc (ui, vj) =
∑

∀(ui∼vj)∈A

|GO (ui) ∩GO (vj)|
|GO (ui) ∪GO (vj)|

, (3.15)

where GO (x) denotes the set of all GO terms assigned to the protein x. To compute the

GOC scores, we downloaded the latest version of GO annotations for each species from

GO consortium [76] (Feb. 10, 2016 version). We only used GO terms that have experi-

mental evidence (i.e., those that include the codes ‘EXP’, ‘IDA’, ‘IPI’, ‘IMP’, ‘IGI’, and

‘IEP’). Additionally, similar to [81], we removed every GO term whose information con-

tent (IC) was smaller than 2, in order to compute GOC scores based on more informative

GO annotations. IC is defined as

IC (c) = − log2
|c|

|root (c)|
, (3.16)

where |c| is the number of proteins having the particular GO term c, and |root (c)| is

the total number of proteins under the root GO term of the particular GO term c, where

three root GO terms are molecular function (MF, GO:0003674), biological process (BP,

GO:0008150), and cellular component (CC, GO:0005575). Note that if at least one pro-
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tein in the aligned protein pair does not have a functional annotation such as KO group

annotations or GO terms, the aligned protein pair was removed before computing the per-

formance metrics CN, SPE, and GOC scores.

To assess the topological quality of the constructed network alignment, we counted the

number of conserved interactions (CI) as follows:

∑
∀(ui,uj)∈D

1 [(ui, uj) ∈ D] · 1 [(f (ui) , f (vj)) ∈ E ] , (3.17)

where 1 [·] is the indicator function whose value is 1 if the statement in the bracket is

true and 0 otherwise, and f (x) denotes the corresponding protein aligned to the protein

x. However, the conserved interactions may not be necessarily be significant from a bi-

ological perspective if the aligned proteins connected by the conserved interactions are

not orthologous. Considering the large size of typical PPI networks, simply aiming at a

network alignment that maximizes the number of conserved interactions may risk overfit-

ting the network topology without clear biological significance, which can be especially

problematic when PPI networks are incomplete and noisy. For this reason, in order to as-

sess the biological significance of the topological mapping in a given network alignment,

we counted the number of conserved orthologous interactions, which is the number of

conserved interactions between orthologous protein pairs (COI). This is given by:

∑
∀(ui,uj)∈D

h (ui, uj) · 1 [(ui, uj) ∈ D] · 1 [(f (ui) , f (uj)) ∈ E ], (3.18)

where

h (ui, uj) =

 1, if [goc (ui, f (ui)) · goc (uj, f (uj))] > 0

0, otherwise
. (3.19)

We compared the performance of CUFID-align against a number of state-of-the-art
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alignment methods: IsoRank [12], PINALOG [31], HubAlign [34], SMETANA [13], and

SMETANA-CSRW [17] Additionally, to verify the effectiveness of the network-based

approach over the conventional approach that uses sequence similarity alone, we com-

pared the various network-based methods and with a method that finds the best mapping

between networks solely based on the sequence similarity between the proteins. More

specifically, given a network pair, we tried to predict the network alignment by using max-

imum weighted bipartite matching based on BLAST bit scores. Since both SMETANA

and SMETANA-CSRW yield many-to-many mappings by default, we used the parameter

nmax = 1 to obtain one-to-one mappings. Other than this, the default parameters were

used in our experiments (i.e., α = 0.9 and β = 0.8). For HubAlign, we used the default

parameters (i.e., λ = 0.1, d = 10, and α = 0.7). For IsoRank, we set the parame-

ter α = 0.6 as recommend in the original paper. For CUFID-align, we set the parameter

α = 0.9 and β = 90 percentile of the transformed correspondence score. We performed all

experiments on a desktop computer equipped with a 3.2 GHz Intel i5 quad-core processor

and 8 GB memory.

We assessed the performance of CUFID-align by predicting the alignment for every

pair of PPI networks in the IsoBase dataset. CN and SPE are summarized in Table 3.2.

As we can see, CUFID-align and BLAST-MWBM achieve higher CN in all test cases.

This means that CUFID-align and BLAST-MWBM can generally align a larger number

of proteins that have the same functional annotations (i.e., KEGG orthologous group an-

notations) than the other state-of-the-art network alignment methods. Interestingly, the

sequence-similarity-based approach can identify a larger number of correct nodes (CN)

than most of the other network-based approaches. However, as will be shown later, it is

clearly biased and the method performs very poorly in terms of the topological quality of

the predicted network alignment. CN for PINALOG and HubAlign may depend on the

average degrees of the PPI networks (i.e., |E|/|V|). That is, if one of the PPI networks has
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Yeast – Fly Yeast – Worm Yeast – Human Yeast – Mouse Fly – Worm
CN 1 SPE 2 CN SPE CN SPE CN SPE CN SPE

CUFID-align 1,708 0.748 1,548 0.834 1,330 0.736 1,304 0.794 2,616 0.873
SMETANA-CSRW 1,610 0.757 1,426 0.850 1,224 0.733 1,192 0.802 2,444 0.870

SMETANA 1,530 0.733 1,422 0.843 1,134 0.710 1,182 0.782 2,338 0.852
PINALOG 1,368 0.722 640 0.737 1,100 0.682 76 0.400 672 0.689
HubAlign 1,326 0.681 98 0.170 1,082 0.633 42 0.231 102 0.201
IsoRank 1,414 0.712 650 0.703 1,142 0.702 76 0.369 918 0.818

BLAST-MWBM3 1,712 0.776 1,544 0.836 1,334 0.768 1,280 0.792 2,680 0.885
Fly – Human Fly – Mouse Worm – Mouse Worm – Human Human – Mouse
CN SPE CN SPE CN SPE CN SPE CN SPE

CUFID-align 2,528 0.754 2,364 0.788 1,818 0.807 1,858 0.791 5,178 0.983
SMETANA-CSRW 2,358 0.763 2,146 0.768 1,610 0.811 1,722 0.803 5,002 0.978

SMETANA 2,096 0.706 2,112 0.764 1,578 0.803 1,570 0.780 4,876 0.972
PINALOG 1,172 0.604 118 0.567 66 0.458 482 0.677 282 0.972
HubAlign 354 0.219 34 0.230 24 0.188 32 0.063 144 0.667
IsoRank 1,736 0.725 146 0.566 72 0.456 644 0.793 286 0.979

BLAST-MWBM 2,580 0.766 2,374 0.781 1,824 0.808 1,884 0.794 5,140 0.982
1 CN: ccorrect nodes.
2 SPE: specificity.
2 BLAST-MWBM: maximum weighted bipartite matching of PPI networks only using the BLAST bit score.

Table 3.2: Pairwise alignment results for the IsoBase dataset. Protein functionality is
determined based on the KEGG Orthology (KO) group annotations [77] c⃝ [2016] BMC.

a much lower average degree, the overall quality of the network alignment may be sig-

nificantly degraded. Note that human, yeast, and fly PPI networks have relatively higher

average degrees, and mouse and worm PPI networks have relatively lower average de-

grees. Since PINALOG and HubAlign adopt a seed-and-extension approach, the search

space for aligning addition protein pairs is restricted to the neighboring nodes of the seed

network. Hence, it would be possible that PINALOG and HubAlign may align proteins

even though there is no orthologous protein pair in the search space (i.e., the current set of

neighboring nodes), which may affect the quality of the final alignment.

When it comes to the specificity of the alignment results, random walk based meth-

ods (CUFID-align, SMETANA-CSRW, and SMETANA) achieve relatively higher SPE

compared to PINALOG and HubAlign. SPE of HubAlign appears to be more sensitive

than the other methods with respect to the average degrees of the PPI networks. CUFID-
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Figure 3.5: GOC scores of various pairwise network alignment algorithms [77] c⃝ [2016]
BMC.

align, SMETANA-CSRW, and SMETANA achieve similar SPE, often higher than those of

PINALOG and HubAlign. This means that CUFID-align can in general more accurately

align protein pairs that have the same functional annotations compared to PINALOG and

HubAlign.

Since proteins can have multiple functions, we further evaluated the functional consis-

tency of the alignment results based on the GOC scores, where higher GOC scores indicate

that the obtained alignments are functionally more coherent. As we can see in Figure 3.5,

CUFID-align achieves higher GOC scores than the other compared algorithms in all test

cases. Again, if the network pairs have higher average degrees, PINALOG and HubAlign

show comparable GOC scores. However, probably due to the restricted search space of

the seed-and-extend approach, GOC scores of PINALOG and HubAlign tend to be smaller

than the other methods when the average degree of one of the PPI networks is relatively

smaller than that of the other. In comparison, CUFID-align is more robust to the change

of topological properties such as the average degrees of the PPI networks to be aligned.
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Yeast – Fly Yeast – Worm Yeast – Human Yeast – Mouse Fly – Worm
CUFID-align 1,721 486 3,421 56 347

SMETANA-CSRW 337 110 2,468 31 107
SMETANA 504 171 2,377 37 116
PINALOG 2,982 1,000 6,231 225 666
HubAlign 836 4,013 2,659 545 3,276
IsoRank 1,436 764 3,165 176 558

BLAST-MWBM 246 89 1,317 14 70
Fly – Human Fly – Mouse Worm – Mouse Worm – Human Human – Mouse

CUFID-align 1,547 59 18 459 318
SMETANA-CSRW 710 41 8 198 336

SMETANA 965 50 16 283 337
PINALOG 2,730 88 47 917 358
HubAlign 9,317 491 459 3,743 532
IsoRank 1,471 106 130 569 350

BLAST-MWBM 441 12 2 138 253

Table 3.3: Number of conserved interactions (CI) obtained by different network alignment
algorithms [77] c⃝ [2016] BMC.

The above results show that CUFID-align can accurately predict matching proteins in

different species that have similar functionalities, according to the functional annotations

of proteins that are currently available. The results also imply that the proposed algorithm

may provide a useful tool for predicting the functions of unknown proteins in less studied

species through network alignment with species that have been better studied.

Next, to assess the topological quality of the network alignment results, we compared

the number of conserved interactions (CI) predicted by different methods. Table 3.3 shows

the CI for all compared methods. As we can see in Table 3.3, CUFID-align can identify

a larger number of conserved interactions than SMETANA-CSRW and SMETANA, but

it is smaller than HubAlign and PINALOG. In fact, our results show that PINALOG and

HubAlign outperform the other methods in terms of CI. One interesting observation is that

although PINALOG and HubAlign can identify a large number of conserved interactions

compared to CUFID-align, GOC scores for PINALOG and HubAlign are much smaller

than CUFID-align as shown in Figure 3.5. Since both PINALOG and HubAlign adopt
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Yeast – Fly Yeast – Worm Yeast – Human Yeast – Mouse Fly – Worm
CUFID-align 91 10 743 5 3

SMETANA-CSRW 91 8 749 6 2
SMETANA 86 10 705 8 4
PINALOG 129 15 970 19 4
HubAlign 57 2 634 15 5
IsoRank 94 11 741 10 4

BLAST-MWBM 74 8 556 4 2
Fly – Human Fly – Mouse Worm – Mouse Worm – Human Human – Mouse

CUFID-align 202 13 1 21 111
SMETANA-CSRW 196 10 1 26 139

SMETANA 230 14 1 26 123
PINALOG 180 22 2 27 134
HubAlign 67 15 4 5 98
IsoRank 185 17 1 18 142

BLAST-MWBM 112 6 0 15 94

Table 3.4: Number of conserved orthologous interactions (COI) obtained by different net-
work alignment algorithms [77] c⃝ [2016] BMC.

a seed-and-extension approach, the algorithms only align protein nodes if they are con-

nected to the seed network alignment. PINALOG and HubAlign may have a higher risk

for overfitting the prediction outcomes to the topological structure of the PPI networks

compared to the other methods, and they may not as effectively deal with the inserted

or deleted nodes as the random walk based methods, which may be problematic when

handling PPI networks that are incomplete and/or contain many errors (e.g., many false

positive interactions). As the GOC scores were low for PINALOG and HubAlign, de-

spite the high CI they attained, we wanted to further evaluate the biological significance

of the conserved interactions in the predicted network alignment results. For this purpose,

we counted the number of conserved interactions between orthologous protein pairs. Ta-

ble 3.4 summarizes the number of conserved orthologous interactions (COI) predicted by

different algorithms. Note that, for this experiment, we did not consider the alignment

of networks whose average degrees differ significantly, since there will be only a small

number of conserved orthologous interactions in such cases. Table 3.4 shows that CUFID-
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align achieves comparable or higher COI compared to PINALOG and HubAlign except

for the alignment between the yeast and human PPI networks.

We also compared the network-based approaches with the sequence-similarity-based

approach. As we can see in Table 3.2 and Figure 3.5, a simple sequence-similarity-based

approach can construct network alignments with high functional coherence, and that the

node similarity score may provide useful guidelines for identifying orthologous proteins.

However, these results should be taken with a grain of salt, since they are likely due to

the fact that the current functional annotations of proteins are often based on sequence

similarity between proteins. As shown in Table 3.3 and Table 3.4, BLAST-MWBM –

which uses BLAST bit score and MWBM without using any network information – can

identify a much smaller number of CIs and COIs compared to the network-based meth-

ods. These results imply that strong dependence on sequence similarity for constructing a

network alignment has the potential risk of getting biased results that may fail to capture

important protein interactions that are conserved across different species, which may be

critical in deciphering the underlying cellular mechanisms that involve those interactions.

In contrast, network-based methods, including CUFID-align, that incorporate topological

information for constructing network alignments can make accurate and balanced predic-

tions that identify both orthologous proteins as well as conserved interactions. Our results

clearly show the importance of effective integration of node similarity and topological

similarity for effective comparative analysis of PPI networks.

Finally, Table 3.5 shows the computation time for each method. As we can see in this

table, CUFID-align needs the least computation time among all compared methods in most

test cases. Computation time of HubAlign largely depends on the average degrees of the

PPI networks because HubAlign takes a seed-and-extension approach, whose search space

is strongly affected by the average degrees of the PPI networks to be aligned. Computation

time of SMETANA-CSRW is proportional to the size of the PPI networks. The bottleneck
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Yeast – Fly Yeast – Worm Yeast – Human Yeast – Mouse Fly – Worm
CUFID-align 6.22 4.79 11.22 5.70 12.88

SMETANA-CSRW 243.64 163.24 448.29 435.94 3,002.20
SMETANA 6.65 5.81 11.47 9.12 26.11
HubAlign 451.24 75.67 571.23 5.30 55.87
PINALOG 997.85 1,654.66 1,984.03 2,202.15 2,141.00

IsoRank 1,737.07 369.52 3401.29 64.47 181.55
Fly – Human Fly – Mouse Worm – Mouse Worm – Human Human – Mouse

CUFID-align 18.93 18.38 25.71 28.36 68.59
SMETANA-CSRW 6,104.70 6,420.80 6,383.70 6,084.10 4,9185.00

SMETANA 63.43 60.85 53.24 56.28 454.11
HubAlign 532.31 4.92 1.91 84.45 8.99
PINALOG 3,127.35 1,611.39 101.86 6,764.56 4,864.16

IsoRank 1433.27 37.77 16.92 326.79 77.64

Table 3.5: CPU time of the tested network alignment algorithms (in seconds) [77]
c⃝ [2016] BMC.

for SMETANA-CSRW is the step for constructing the transition probability matrix of the

context-sensitive random walker (CSRW), whose computation time is proportional to the

size of the two PPI networks that need to be aligned. PINALOG requires a relatively long

computation time compared to other methods in most cases, as shown in Table 3.5.

In this work, we have focused on the steady-state network flow approach and its ap-

plication to the pairwise network alignment problem. However, the problem of multiple

network alignment has been gaining wide interest in the research community and its prac-

tical importance has been increasing as the number of available PPI networks for different

species continue to increase. Although it is beyond the scope of this subchapter, we expect

the extension of CUFID-align for multiple network alignment will be relatively straightfor-

ward. First of all, to this aim, we can modify the transition probability matrix in Eq. (3.9)

by concatenating the normalized adjacency matrices and node similarity score matrices

for the multiple PPI networks to be aligned. Following the construction of this extended

transition probability matrix, the steps for computing the node correspondence scores –

shown in Eq. (3.11) and Eq. (3.13) – can be modified by constructing diagonal matrices
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and inserting corresponding the matrices into the diagonal terms. The extended version

of CUFID-align for multiple PPI network alignment is expected to have distinctive ad-

vantages over other existing multiple PPI network alignment algorithms. First, it may be

able to estimate the ‘global’ node correspondence scores more accurately. Currently, most

multiple PPI network alignment algorithms estimate the node correspondence scores for

every PPI network pair in the interest of computational complexity. The estimated pair-

wise node correspondence scores are later updated based on additional transformations to

make them more suitable for multiple network alignment. However, considering that the

ultimate goal is in constructing the alignment of multiple networks, it would be preferable

to estimate the node correspondence scores (or equivalently, node alignment probabilities)

Pr [ui ∼ vj|G] considering all networks, rather than just estimating Pr [ui ∼ vj|GX ,GY ]

based on the given network pair, where ui ∈ GX , vj ∈ GY , and G is the set of all PPI

networks including GX and GY . Since the aforementioned extension of CUFID-align es-

timates the node correspondence scores based on an integrated network that combines

all networks in G, it has the potential to accurately compute the posterior node-to-node

alignment probability given all the networks. Computation of such ‘global’ node corre-

spondence score may lead to improved multiple network alignment results. Second, the

extended version of CUFID-align will still be computationally very efficient, as most steps

in CUFID-align only require simple matrix operations even if extended to multiple net-

works. Finally, the extended approach will require relatively low computational resources

(especially, in terms of memory). For example, suppose that there are N PPI networks,

where the number of nodes in the i-th network Gi is Vi. To align the N PPI networks,

IsoRankN will need the pairwise node correspondence scores for each of the
(
N
2

)
network

pairs, where for each pair, the algorithm will need to construct a |Vi · Vj| × |Vi · Vj| di-

mensional matrix. However, CUFID-align can compute the global node correspondence
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scores by constructing a single
∣∣∣∣ N∑
i=1

Vi

∣∣∣∣ × ∣∣∣∣ N∑
i=1

Vi

∣∣∣∣ dimensional matrix. We are currently

working on extending CUFID-align for multiple network alignment.

3.2.3 Conclusions

In this subchapter, we proposed CUFID-align, a novel network alignment algorithm

based on the concept of steady-state network flow of a Markov random walk model on an

integrated network. Given a pair of PPI networks, CUFID-align constructs an integrated

network and a Markov random walk model on the resulting network such that the steady-

state network flow between a pair of nodes in different PPI networks increases when the

nodes have higher pairwise node similarity (typically measured based on sequence sim-

ilarity) and topological similarity. For this purpose, the Markov random walk model is

designed to make more frequent transitions between protein nodes that have higher overall

similarity, thereby making the steady-state network flow – which reflects the long-run be-

havior of the random walker – an effective measure of the correspondence between nodes

that belong to different networks. As we have shown in our performance assessment re-

sults using real PPI networks in the IsoBase database, CUFID-align can accurately align

proteins with identical functional annotations at a relatively low computational cost. Our

results show that CUFID-align may provide an effective means of computationally anno-

tating the functions of proteins through comparative analysis of PPI networks. The source

code and datasets can be downloaded from http://www.ece.tamu.edu/∼bjyoon/CUFID

3.3 Network querying through the CUFID model

In this subchapter, we propose a novel network querying algorithm to identify the

conserved subnetwork in the target PPI network, considering both molecular and topo-

logical/structural properties. Proposed network querying algorithm addresses two ma-

jor challenges in a network querying problem: complexity problem and structural varia-

tion of the conserved networks. To tackle the complexity problem, we adopt the CUFID
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Figure 3.6: Illustration of a typical network querying problem. The node marked in red
in the query network is deleted in the target network, and the node marked in blue is
not present in the query but inserted in the target network. Note that the terms inser-
tion/deletion are relative, and an inserted node in one network can be viewed as a deleted
node in the other network.

(Comparative network analysis Using the steady-state network Flow to IDentify ortholo-

gous proteins) model [77]. Typically, as a network querying algorithm requires to examine

a large-scale target network in order to find the best matching subnetwork that is similar to

the given small query network, computationally efficient method to scan a large searching

space is necessary. Additionally, we utilize a seed-and-extension approach in order to deal

with structural variations of conserved networks. As illustrated in Figure 3.6, although

the conserved subnetwork performs the similar biological functions, there are inserted and

deleted nodes and edges, and these structural changes make it difficult to solve a network

querying problem through a classical bipartite matching problem.

In the proposed method, we first estimate the node-to-node correspondence (i.e., bi-

ological relevance or matching probability) between query and target networks. Then,

based on the estimated node correspondence scores, we select the largely connected seed

network through a maximum weighted bipartite matching algorithm. Next, we iteratively
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extend the seed network by including the node that meets the following two conditions:

1) larger association probability and 2) minimizing a conductance of the extending seed

network from the rest of the target network. The association probability could estimate the

frequency of interactions between the nodes in the extending seed network and the neigh-

boring nodes of the seed network. Including the neighboring node with more interactions

to the nodes in the seed network can be advantageous to lead functionally consistent query-

ing results because proteins having a direct interactions have more chances to share and

perform the similar biological functions [65]. Note that since we only consider the nodes

in the target network as a candidate for a network extension, the searching space for the

network extension is limited to the nodes in the target network. In the extension step, we

list all candidate nodes based on the association probability and select the winning node

that can maximally minimize the conductance of the extending seed network. This rule

selects the node having a higher probability to frequently interact with the nodes in the

extending seed network as well as rarely interact to the rest of the network. Finally, after

completing the extension steps, we remove less relevant nodes in the fully extended net-

work based on the personalized PageRank vector [82] in order to increase the functional

consistency of the querying result.

3.3.1 Methods

Suppose that we have a query network and it can be represented as a graph GQ =

(VQ, EQ). For example, a node vi ∈ VQ indicates a protein in the query network and

an edge ei,j ∈ EQ represents the interaction or binding between protein vi and protein

vj . Similarly, suppose that a target network is given and represented by a graph GT =

(VT , ET ). We assume that a pairwise node similarity score s (vq, vt) is given for ∀vq ∈ VQ

and ∀vt ∈ VT , where it is proportional to the molecular level similarity of two proteins

(vq, vt). In this study, we considered protein-protein interactions (PPI) networks, and we
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utilized BLAST bit scores as pairwise node similarity scores but other types of similarity

measurements or their combination can be utilized. Generally, in a network querying

problem, the size of the target network is significantly larger than the size of the query

network, i.e., |VQ| ≪ |VT |, where the size of the network is the number of nodes in the

network.

The goal of network querying is to identify the conserved subnetworks that are ex-

pected to perform the same or similar biological functions to the given query network.

Hence, the network querying problem is formulated as the following optimization prob-

lem:

Ĝ∗
T = argmax

∀ĜT ∈GT

f
(
ĜT ,GQ

)
, (3.20)

where GT is a feasible set of all subnetworks in the target PPI network, and f (GX ,GY)

is the function that can quantitatively estimate the functional similarity or biological rele-

vance of two biological networks (GX ,GY).

Network querying can be viewed as a subgraph isomorphism problem, where it de-

termines whether one graph (query network) is isomorphic to the subgraph of the target

graph (target PPI network). Solving the network querying problem as the subgraph iso-

morphism problem, considering possible node (or edge) insertion and deletion in each

network, is NP-complete [64] Additionally, identifying the conserved subnetwork in the

target network is practically difficult because of the following reasons: 1) it is not easy to

compute node correspondence scores as the scale of the biological network is very large

(i.e., scalability problem), 2) quantitatively estimating the functional similarity f (GX ,GY)

of two biological networks is difficult, and 3) we have no prior knowledge whether the

conserved subnetwork is larger or smaller than the query network because of the struc-

tural variations in biological networks. That is, we have no prior knowledge for the exact

number of inserted/deleted nodes.
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To overcome these challenges, we propose a heuristic network querying algorithm

based on the CUFID (Comparative network analysis Using the steady-state network Flow

to IDentify orthologous proteins) model [77] and a seed-and-extension approach. In the

proposed network querying algorithm called CUFID-query, we first compute the node-to-

node correspondence scores through the CUFID model. The CUFID model can effectively

deal with the complexity problem as it can estimate the node correspondences for large-

scale networks with a low computational cost. Based on the intuition that two proteins in

different networks would be an orthologous pair if they have a high molecular similarity as

well as the similar interaction patterns to its neighboring nodes [24, 12], the CUFID model

can effectively estimate a biological relevance between the nodes in the query and target

network by integrating the molecular and topological similarities in a balanced manner.

After computing the node correspondence scores, we induce a seed network using the seed

nodes that can be identified through a maximum weighted bipartite matching algorithm.

Note that the seed network GS = (VS , ES) is always smaller than the query network (i.e.,

|VS | ≤ |VQ|). Then, we iteratively extend the seed network using a probabilistic model,

where it is designed to select the nodes that can have more interactions to the nodes in the

seed network and minimize the conductance of the extending seed network from the rest

of the target network. Finally, we removed less relevant nodes based on the personalized

PageRank vector. Due to the structural variations between conserved functional modules,

solving a subgraph isomorphic problem may not the best way to find the solution to a

network querying problem in a practical point of view, and a seed-and-extension approach

could be a reasonable alternative. However, since the approach is not the optimal and less

relevant nodes could be included in the network extension steps, effective post-processing

to remove less relevant nodes can increase the accuracy of a querying result.

First, to estimate the node correspondence through the CUFID model, we construct

the integrated network by combining networks to be compared. Specifically, as shown
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Figure 3.7: Illustration for constructing the integrated network by combining the query
and target networks. Dotted lines indicate positive node similarity scores between pairs of
nodes, where the thickness of each line is proportional to the similarity score. We insert a
pseudo-edge between a node in the query network and a node in the target network if the
corresponding proteins have a positive node similarity score.

in Figure 3.7, we insert the pseudo-edges connecting nodes in the query and target net-

works if their pairwise node similarity score is greater than a threshold st. That is, the

integrated network can be represented as a graph G = (V , E), where V denotes the

union of the nodes in the query and target networks (i.e. V = {VQ,VT }); E is the

union of the edges in the two networks; and the inserted pseudo-edges such that EP =

{ei,j|vi ∈ VQ, vj ∈ VT , s (vi, vj) > st}, (i.e., E = {EQ, ET , EP}). Then, we allow a ran-

dom walker to transit within and across the networks to be compared.

If the random walker performs a random movement over the edges representing protein-

protein interactions, it can move to its neighboring nodes belonging to the same PPI net-

work. That is, at the current position of the random walker, it can transit to its neighboring

nodes only if they are connected through the edges either EQ or ET indicating the protein-

protein interactions. The transition probability for the random walk within either the query

or target PPI networks is given by

PQ = D−1
Q ·AQ and PT = D−1

T ·AT, (3.21)
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where AQ (or AT) is an adjacency matrix of the query (or target) network and DQ (or

DT) is a diagonal matrix such that DQ =
∑
∀j

AQ [i, j] (or DT =
∑
∀j

AT [i, j]).

The random walker can also transit across the query and target networks through the

pseudo-edges EP . When the random walker transits from the query network to the target

PPI network, the transition probability of the random walker for this event is given by

PQ→T = D−1
S · S, (3.22)

where S is a |VQ|×|VT | dimensional matrix for the pairwise node similarity score such that

S [i, j] = s (vi, vj) ,∀vi ∈ VQ,∀vj ∈ VT , and DS is a |VQ| × |VQ| dimensional diagonal

matrix such that DS =
∑
∀j

S [i, j].

Similarly, if the random walker jumps from the target PPI network to the query net-

work, the transition probability is given by

PT→Q = ST ·D−1
ST . (3.23)

We can construct the overall transition probability matrix for the random walker over

the integrated network G by concatenating the above probability matrices as follows:

P =

 PQ PQ→T

PT→Q PT

 , (3.24)

with necessary normalization to make the matrix P a stochastic matrix. We can compute

the corresponding steady-state probability π of the random walker, where it is equivalent to

the expected time of the random walker staying at the particular node in long term. Since

real PPI networks have generally sparse interactions, the steady-state probability can be

easily obtained through a power method [77].
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Figure 3.8: Estimating the steady-state network flow based on the CUFID model. Red
arrows indicate the random walk within the query or the target network, while the green
arrows represent the random walk across two networks. The correspondence between two
nodes – one in the query network and the other in the target network – can be estimated by
measuring the steady-state network flow through the pseudo-edges connecting the nodes.

Finally, as shown in Figure 3.8, the node-to-node correspondence between the query

and target networks can be obtained by estimating the steady-state network flow (i.e.,

traversal of the random walker) across the pseudo-edges connecting the nodes in the query

and target networks, which is given by

C = π̄Q ·PQ→T +PT
T→Q · π̄T , (3.25)

where π̄Q is a |VQ| × |VQ| dimensional diagonal matrix such that π̄Q [i, i] = π (vi) ,∀vi ∈

VQ and π̄T is a |VT |×|VT | dimensional diagonal matrix such that π̄T [i, i] = π (vj) , ∀vj ∈

VT .

The proposed network querying algorithm – CUFID-query – has three main steps.

First, we compute the node-to-node correspondence between the query and target net-
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works through the CUFID model. Next, we select the seed network (i.e., high scoring

subnetwork) and iteratively extend the seed network in the target network until it meets

the stop conditions. Finally, we remove less relevant nodes based on the personalized

PageRank (PPR) vector of the induced network.

Once we obtained the node correspondence between the query and target networks

through Eq. (3.25), we select the seed nodes by maximum weighted bipartite matching

implemented in the MATLAB GAIMC toolbox [80]. Then, we construct the induced seed

network based on the selected seed nodes (i.e., the matching nodes in the target network

corresponding to the nodes in the query network). If the induced network is disconnected,

we will use the largest connected network as the seed network. If all the seed nodes are

disconnected, we will select a single node with the maximum correspondence score as the

seed.

Next, we iteratively extend the seed network by adding a node based on the association

probability and conductance minimization criteria. To this aim, we define the association

probability as the likelihood that the random walker starting from a node in the seed net-

work will return to the seed network within 2 hops by passing through the neighboring

nodes of the seed network. When a neighboring node has a higher association probability,

it can have more interactions to the seed network and it is more likely to share the similar

biological functions to the nodes in the seed network because interacting proteins tend to

share the similar biological functions [65]. To compute the association probability, we

compute the initial steady-state probability πS of the random walker for the seed network.

Given the seed network GS = (VS , ES), the steady-state probability for the node vi in the

seed network is given by [83]

πS (vi) =
d (vi)∑

vi∈GS

d (vi)
, (3.26)
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where d (vi) is the degree of the node vi.

Then, for each neighboring node vn such that vn = {vx|vx ∈ N (vi) ,∀vi ∈ VS}, the

probability of the random walker jumps to the neighboring node vn from any node in the

seed network is given by

P1 (vn) =
∑

vi∈{VS∩N (vn)}

πS (vi)

d (vi)
, (3.27)

where N (vx) is the neighboring nodes of the node vx.

Finally, the association probability for the neighboring node vn is given by

P2 (vn) = P1 (vn) ·
r (vn)

d (vn)
, (3.28)

where r (vn) is the number of edges connecting vn and the nodes in the seed network (i.e.,

|{en,j|vn, vj ∈ GS}|).

We select top K candidate nodes having the highest association probability, and select

the finalist to be included to extend the seed network based on the conductance mini-

mization criterion. Conductance minimization criterion has been widely utilized in the

non-comparative network analysis algorithms [84, 83] because proteins in the functional

module typically tend to be densely connected to each other while sparsely connected to

the rest of the network. Given a subnetwork GS in the target network (i.e., GS ⊂ GT ), the

conductance of the subnetwork is given by [82]

φ (GS) =
|{ei,j|vi ∈ VQ, vj ∈ V\VQ}|

min (vol (GS) , 2m− vol (GS))
, (3.29)

where m is the number of undirected edges and vol (G) =
∑
vi∈G

d (vi). Since the conserved

subnetwork is typically much smaller than the target network (i.e., GS ≪ GT ), Eq. (3.29)
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becomes

φ (GS) =
|{ei,j|vi ∈ VQ, vj ∈ V\VQ}|

vol (GS)

=
|{ei,j|vi ∈ VQ, vj ∈ V\VQ}|
|{ei,j|vi ∈ VQ, vj ∈ VQ}|

.

(3.30)

In the extension steps, we first select the top 20 nodes with the highest association

probability, and we finally select one node that can maximally minimize the conductance

of the seed network. We iteratively extend the seed network until either one of the fol-

lowing stopping conditions is satisfied: 1) the size of the extending seed network exceeds

the limits; 2) there are no neighboring nodes that can decrease the conductance of the

extending network more than 10 percent.

Once the seed network is fully grown, we finally refine the extended seed network by

removing the less relevant nodes based on the personalized PageRank (PPR) vector. For

this purpose, we construct the induced network GI based on the extended seed network and

its neighboring nodes (i.e., GI = (VI , EI), where VI = {VS ,N (VS)} and EI = {ES , EA}

such that EA = {ei,j|vi ∈ VS , vj ∈ N (VS)}). Then, we compute the PPR vector for the

induced network GI . The standard PPR vector r is a unique solution of the following

equation: [82]

r = α · s+ (1− α) · r ·M, (3.31)

where α is a teleportation constant and we set α as 0.5, M is the normalized adjacency

matrix of the induced network GI and s is a preference vector. We set the preference vector

s as follows:

s (vi) =

 1/|VS | , vi ∈ VS

0, otherwise.
(3.32)

Once we obtain the PPR vector for the induced network GI , we iteratively select the

nodes with the highest PPR vector values until the cumulative sum becomes 0.5. In this
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Algorithm 3: CUFID-query
Data: Query GQ and target GT networks and pairwise node similarity scores
Result: List of nodes in the querying results
begin

1 Compute the node correspondence score C using Eq. (3.25)
2 Select seed nodes using a maximum weighted bipartite matching algorithm
3 Identifying the seed network GS = (VS, ES) by finding the largest connected

network based on the seed nodes
4 Set φold = ∞

while |VS | ≤ 2 · |VQ| or φnew ≤ β · φold do
5 Find the set K of top K candidate nodes based on 2-hop returning

probability
6 Compute the conductance φt for the induced network {VS ∪ vt} for each vt,

∀vt ∈ K
7 vt∗ = argmin

t
φt

8 Set φnew = φt∗

9 Check stopping conditions
10 Update GS such that VS = {VS ∪ vt∗} and

ES = {ES ∪ ei,j|∀vi ∈ VS , j = vt∗}
11 Set φold = φt∗

end
12 Compute personalized PageRank vector using Eq. (3.31)
13 Remove less relevant nodes based on PPR vector and return the largest

connected network
end

pruning step, it would be possible that the nodes in the extended seed network could be re-

moved and other neighboring nodes would be included in the final querying results. Note

that this pruning process could make the querying results disconnected. If the identified

network is fragmented by the pruning step, CUFID-query only returns the largest con-

nected network as the querying results. The steps of CUFID-query are summarized in

Algorithm 3. We briefly compare SEQUOIA [18] and CUFID-query as they both adopt

similar seed-and-extension approaches. One important difference between the seed exten-
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sion steps in the two algorithms is that SEQUOIA extends the intermediate networks only

based on the conductance minimization principle while CUFID-query adopts the conduc-

tance minimization principle and simultaneously uses the association probability to select

additional nodes. Furthermore, in the post-processing step, SEQOIA only removes irrel-

evant nodes in the extended seed network, but CUFID-query can recruit new nodes that

are originally not included the extended seed network by utilizing the PPR vector of the

induced network GI .

3.3.2 Results

To assess the performance of CUFID-query, we performed experiments based on the

known biological complexes and real-world PPI networks for three species: H. sapiens

(human), S. cerevisiae (yeast), and D. melanogaster (fly). We obtained target PPI networks

from STRING v10 [85]. Then, we extracted the protein-protein interactions classified as a

‘binding’ (direct interaction) and removed the protein-protein interactions without an ex-

perimental validation. We further removed protein-protein interactions with the confidence

score less than 400 that indicate a medium level confidence. After the aforementioned pre-

processing, the human PPI network includes 12,049 proteins and 95,209 interactions, the

mouse PPI network includes 10,428 proteins and 112,541 interactions, and the yeast PPI

network includes 5,726 proteins and 88,308 interactions. To obtain the pairwise node sim-

ilarity score for each network pair, we computed BLAST bit scores between amino acids

sequences for each protein pair through BLAST version 2.3. Note that the amino acid

sequences for each species were obtained from STRING v10.

We obtained the known biological complexes for human and mouse from CORUM [70],

and known biological complexes for yeast are obtained from SGD [71] (accessed at Feb.

1 2017). Then, we extracted the connected networks with the size of 4 to 25. We obtained

overall 1,242 test cases, where the 371 human complexes were queried against the mouse
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PPI network, the 349 human complexes were queried against the yeast PPI network, the

64 mouse complexes were queried against the human PPI network, the 54 mouse com-

plexes were queried against the yeast PPI network, the 201 yeast complexes were queried

against the human PPI network, the 203 yeast complexes were queried against the mouse

PPI network.

To assess the biological significance of the querying results, we performed a GO en-

richment test for the querying results. To this aim, we downloaded the GO ontology and

annotation files for each species from Gene Ontology Consortium [76] (accessed at Feb.

2 2017), and we only used GO terms with the following experimental evidence codes:

‘EXP’, ‘IDA’, ‘IPI’, ‘IMP’, ‘IGI’, and ‘IEP’. Additionally, we retained GO terms whose

information contents (IC) is greater than 2 in order to perform GO enrichment test based

on the more informative terms as recommended in [75]. IC is given by

IC (g) = − log2
|g|

|root (g)|
, (3.33)

where |g| is the number of proteins that are annotated with the particular GO term g, and

|root (g)| is the number of proteins belonging to the root GO term of the GO term g. Note

that, due to the hierarchical structure, every GO term belongs to one of the root terms: bio-

logical process (BP, GO:0008150), cellular component (CC, GO:0005575), and molecular

function (MF, GO:0003674). We used the latest version of GO::TermFinder [74] to per-

form the GO enrichment test for the querying results.

We compared the performance of CUFID-query against state-of-the-art algorithms:

SEQUOIA [18], NatalieQ [56], Corbi [58], RESQUE [11], and HubAlign [34]. We used

default parameters for NatalieQ. In the R package for Corbi, we used a function for a

network querying with the default parameters and set the query type as a general querying

because we cannot get the results when we set the query type as a heuristic querying.
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Although HubAlign is a pairwise network alignment algorithm, we used HubAlign to

compare the performance of network querying algorithm because network querying can

be classified as a special case of a local network alignment.

To assess the performance of the querying algorithms, we defined various performance

metrics. First, since network querying algorithms can be utilized to predict novel bio-

logical complexes, we performed GO enrichment test for the querying results through

GO::TermFinder [74], and if the false discovery rate (FDR) corrected p-value of the query-

ing result is smaller than 0.01, we considered that the querying result is biologically sig-

nificant so that it has a potential to be a functional module. Then, we counted the number

of hits, defined as the querying results whose FDR corrected p-values are smaller than

0.01. Among these hits, we also counted the number of meaningful hits that are connected

querying results whose FDR corrected p-value is smaller than 0.01.

Next, we defined a specific hit as the querying result that is highly overlapped with

the know biological complexes. To determine whether the querying result is well-matched

to the known biological complexes, we computed the match score of the querying result

by comparing it to the known biological complexes R = {G1,G1, ...,GN}. Given two

biological complexes GX and GY , the matching score is a Jaccard similarity index, which

is given by [73]

match_score (GX ,GY) =
|VX ∩ VY |
|VX ∪ VY |

. (3.34)

Given a querying result GQ∗ , we computed the match score match_score (GQ∗ ,GX ) for all

GX in R, and if there is at least one known complex that yields the match score greater

than a threshold mt, we considered the query result as a specific hit. In this study, we used

a threshold mt of 0.5 as in [73].

We also checked the specificity of the querying results because a querying result may

contain irrelevant nodes even though it can detect the functional modules. Querying results
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Figure 3.9: The number of hits and the number of meaningful hits are shown for each
network querying algorithm. The bars shown in solid colors indicate hits and the shaded
bar indicate meaningful hits. Labels in the horizontal axis show the (query species)/(target
PPI network) pairs.

including many irrelevant nodes may decrease the reliability of the querying algorithm,

and it may not be appropriate in practical applications as it requires additional biological

experiments for validation. To this aim, a specificity was defined as the ratio of the number

of annotated nodes to the overall number of nodes in the querying result. In this exper-

iment, we selected the enriched GO term with the smallest FDR corrected p-value, and

counted the number of nodes annotated with the GO term.

Finally, we also compared the running time of each method in order to compare the

computational complexity.

Figure 3.9 shows the number of hits and meaningful hits for all the query and target

pairs. As shown in Figure 3.9, although RESQUE-C can identify a slightly larger number

of hits, CUFID-query achieves a comparable number of hits to the other methods. CUFID-

query, SEQUOIA, HubAlign, and RESQUE-M show the similar performances in terms of

hits. Among six methods, the sizes of the querying results for RESQUE-C are mostly
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larger than those of other methods. Including more proteins in the query results can lead

to more enriched GO terms with biological significance because biological complexes can

be overlapped and proteins can perform multiple functions. As a result, RESQUE-C has

a higher chance to achieve a higher number of hits than the other methods. Although

RESQUE-C achieves the largest number of hits, we will show later that RESQUE-C in-

cludes a larger number of irrelevant nodes in the querying results that can decrease the

specificity of the querying results. HubAlign and RESQUE-M show the comparable per-

formance to CUFID-query, but we will also present that they can identify a relatively

smaller number of annotated nodes. When considering one of goals for network querying,

predicting and annotating functions of proteins in the target network based on the func-

tions of the query network, identifying more annotated proteins is much advantageous.

Results in Figure 3.9 implies that CUFID-query has a strong potential to identify a novel

functional module conserved in the target PPI network.

Next, when considering meaningful hits, CUFID-query outperforms Corbi, NatalieQ,

and RESQUE-M for all query-target pairs by achieving 52, 42, and 18 percent more

meaningful hits, respectively. Although RESQUE-M records a similar number of hits to

CUFID-query, the number of meaningful hits is much smaller than that of CUFID-query

because RESQUE-M does not guarantee the connected querying results. Similarly, Corbi

and NatalieQ may also identify disconnected subnetworks as their querying results, which

can decrease the number of meaningful hits. Identifying a connected querying result is

practically important because interactions between proteins can trigger or inhibit a partic-

ular cellular mechanism and disconnected querying results may not be helpful to decipher

and interpret the functions of proteins and their relationships. That is, achieving a higher

number of meaningful hits instead of any hits is more important in practice. Based on these

results, CUFID-query is advantageous to identify and predict protein-protein interactions

that cause particular biological processes.
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Figure 3.10 shows the number of specific hits for each network querying algorithm.

Except the case comparing mouse and human, CUFID-query achieves a higher number of

specific hits. When querying yeast complexes against the human PPI network, CUFID-

query clearly outperforms all competing methods. Although RESQUE-C achieves the

largest number of hits and meaningful hits, it records the least number of specific hits be-

cause RESQUE-C includes a large number of less relevant nodes as we mentioned before.

Overall, CUFID-query achieves 16 percent more specific hits than the next best algorithm,

Corbi. Since the main goal of network querying is identifying the conserved subnetworks

in the target network that are similar to the given query network, achieving a higher num-

ber of specific hits is more appropriate for the goal. These results mean that CUFID-query

has a strong potential to accurately identify the known biological complex conserved in

the target PPI network.

We also checked the specificity of each network querying algorithm. Although the

querying algorithm can identify the highly relevant subnetworks to the given query net-

91



Corbi HubAl
ign Natalie

Q
RESQ

UE_C
RESQ

UE_MSEQU
OIA
CUFID

-query

0.00

0.25

0.50

0.75

1.00

 

 

 

S
P

E

(a) Each box plot shows the specificity of a
given network querying algorithm. Note that
the square corresponds to the mean value
and the black diamonds indicate the outliers.

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

 

 F
re

qu
en

cy

 

SPE

 HubAlign
 Corbi
 NatalieQ
 RESQUE-C
 RESQUE-M
 SEQUOIA
 CUFID-query

(b) Histogram showing the specificity of
each algorithm.

Figure 3.11: The specificity of the predictions made by different network querying algo-
rithms.

work, if it includes a larger number of less relevant nodes, it is difficult to exactly select the

conserved subnetwork corresponding to a particular biological process. Figure 3.11 shows

a box plot and histogram of the specificity for each method. As shown in Figure 3.11a,

although Corbi and NatalieQ achieve the highest median value, the difference of the mean

specificity for each method is negligible. CUFID-query still achieves higher specificity

than HubAlign and RESQUE families. Interestingly, there are a number of outliers at

either 0 or 1. Based on the box plot for the specificity, it is difficult to select the best

algorithm in terms of the specificity because of the outliers. However, Figure 3.11b shows

that, although Corbi and NatalieQ can identify more querying results whose specificity

is greater than 0.8, there are also a remarkably larger number of querying results whose

specificity is smaller than 0.2. However, for CUFID-query, there are a relatively smaller

number of querying results with low specificity, and there are a comparable number of

querying results achieving fairly high specificity. This result indicates that querying re-

sults of the proposed method is comparably accurate and it includes a relatively smaller
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human/mouse human/yeast
Annotated Identified % Annotated Annotated Identified % Annotated

NatalieQ 1,233 2,454 0.502 1,382 1,753 0.788
Corbi 1,357 2,493 0.544 1,305 1,693 0.771

HubAlign 1,343 2,544 0.528 1,692 2,461 0.688
RESQUE-C 2,019 4,530 0.446 2,735 3,773 0.725
RESQUE-M 1,395 2,553 0.546 1,669 2,317 0.720
SEQUOIA 1799 3767 0.478 2807 3842 0.731

CUFID-query 1,548 2,946 0.525 2,234 2,969 0.752
mouse/human mouse/yeast

Annotated Identified % Annotated Annotated Identified % Annotated
NatalieQ 223 366 0.609 161 193 0.834

Corbi 229 355 0.645 157 193 0.813
HubAlign 245 372 0.659 206 329 0.626

RESQUE-C 383 712 0.538 368 499 0.737
RESQUE-M 246 372 0.661 227 290 0.783
SEQUOIA 296 542 0.546 336 491 0.684

CUFID-query 277 447 0.620 274 397 0.690
yeast/human yeast/mouse

Annotated Identified % Annotated Annotated Identified % Annotated
NatalieQ 767 1,250 0.614 394 1,223 0.322

Corbi 790 1,230 0.642 424 1,246 0.340
HubAlign 1,003 1,654 0.606 571 1,683 0.339

RESQUE-C 1,265 2,490 0.508 772 2,488 0.310
RESQUE-M 881 1,574 0.560 543 1,571 0.346
SEQUOIA 1,171 2,234 0.524 704 2,337 0.301

CUFID-query 942 1,507 0.625 531 1,541 0.345
Overall

Annotated Identified % Annotated
NatalieQ 4,160 7,239 0.575

Corbi 4,262 7,210 0.591
HubAlign 5,060 9,043 0.560

RESQUE-C 7,542 14,492 0.520
RESQUE-M 4,961 8,677 0.572
SEQUOIA 7,113 13,213 0.538

CUFID-query 5,806 9,807 0.592

Table 3.6: The number of identified nodes and the number of annotated nodes are summa-
rized for different network querying algorithms and different query/target network pairs.

number of less relevant nodes.

Next, we also investigated the number of identified nodes and annotated nodes. As
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Figure 3.12: Computation time for each algorithm. Note that the black dots outside the
whiskers correspond to outliers.

a network querying algorithm can be utilized to predict the functions of proteins in the

identified network by transferring the knowledge about the functions of the querying net-

work, identifying more annotated nodes would be advantageous for annotating functions

of proteins in the target network (i.e., transferring the prior knowledge of the query net-

work). Table 3.6 shows that RESQUE-C can identify a larger number of annotated nodes

but the size of querying results is also relatively larger than the ones obtained by other

methods. Hence, this causes the lowest percentage of annotated nodes for RESQUE-C.

CUFID-query and Corbi show the similar percentages of annotated nodes, but CUFID-

query can identify more annotated nodes than Corbi. This means that CUFID-query is

more effective to accurately annotate protein functions in the novel biological complex

(i.e., identified subnetwork in the target network).

To compare the computational complexity of each method, we compared the running

time of each method. In this experiment, we tested all network querying algorithms using
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the same machine equipped with intel i7 dual core processor (2.9 GHz) and 16 GB mem-

ory. Figure 3.12 shows that CUFID-query and RESQUE family are much faster than other

algorithms, and NatalieQ records the next best in terms of the computation time. Interest-

ingly, although the average of the computation time for NatalieQ and RESQUE family is

very fast, there are a number of outliers. That is, they require unexpectedly longer time

for network querying in some cases. These may depend on the topological structure of the

query and target networks. That is, particular topological structures may require longer

computation time for querying. Although CUFID-query also has outliers, the most cases

complete the querying within a few seconds for all 1,242 test cases. In addition to the

computation time, NatalieQ fails to identify querying results for 71 queries among 1,242

queries (i.e., NatalieQ can not find any matching nodes for 71 queries). This means Na-

talieQ may not be robust for a particular topological structure, but CUFID-query finds

querying results for all 1,242 queries and records a stable running time, where it implies

the robustness of CUFID-query.

3.3.3 Conclusions

In this subchapter, we propose a novel network querying algorithm, CUFID-query. We

utilize the CUFID model in order to estimate the correspondence (or biological relevance)

between nodes in the query and large-scale target networks. In the CUFID model, we first

construct the integrated network by inserting pseudo-edges between nodes in the query

and target networks, and we design a random walker whose random transition through

a pseudo-edge is proportional to both node and topological similarities. Hence, we can

effectively estimate the node correspondence by measuring a steady-state network flow

across the pseudo-edges with a reduced computational cost. Based on the estimated node

correspondence scores through the CUFID model, CUFID-query identifies the seed net-

work (i.e., high correspondence region in the target network). Then, we iteratively extend
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the seed network by adding a selected node, based on the association probability and the

conductance minimization criterion. Finally, in case that the seed-and-extension approach

may include irrelevant nodes, we remove less relevant nodes based on the personalized

PageRank vector for the induced network. Through an extensive performance evaluation

using 1,242 known biological complexes and large-scale PPI networks, we have shown

that CUFID-query leads to accurate and functionally consistent querying results.
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4. SUMMARY AND CONCLUSIONS

In this dissertation, we proposed novel probabilistic random walk models to estimate

node-to-node correspondences between large-scale networks. To validate the effective-

ness, we applied the proposed random walk models to comparative network analysis such

as a global network alignment problem and a network querying problem.

First, we proposed the context-sensitive random walk (CSRW) model. In this model,

we addressed challenges in comparative network analysis. That is, the main concern is

how to effectively integrate the different types of similarities in a balanced manner by deal-

ing with structural variations such node insertions/deletions. The concept of the context-

sensitive random walk model is motivated by the pair-HMM that is widely accepted in

the biological sequence alignment problem because we can identify conceptually similar

counterparts between comparative sequence and network analysis. In the context-sensitive

random walk model, the random walker can switch its mode of movement based on the

context (i.e., similarities of the neighboring nodes) of the current position of the random

walker. The context-sensitive nature of this model enabled to effectively incorporate dif-

ferent similarities even though there are structural variations across networks.

Second, we proposed a CUFID (Comparative network analysis Using the steady-state

network Flow to IDentify orthologous proteins) model. The CUFID model adopts a con-

cept of ‘water’ flow between networks. That is, it constructs the integrated network by

inserting pseudo edges between potential matching nodes in different networks. Then, we

design the random walker that the frequency of transitions across pseudo edges is propor-

tional to the node level similarity as well as the number of (potential) matching neighbor-

ing nodes. As a result, the CUFID model further improves the CSRW model in terms of

accuracy as well as computational complexity. More importantly, the CUFID model can
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be easily extended to estimate global node correspondences for multiple networks.

We applied CSRW model and CUFID model to comparative network analysis prob-

lems using real protein-protein interactions (PPI) networks. In a global network alignment

problem, we estimated node-to-node correspondences between different PPI networks by

using CSRW and CUFID models. Then, we derived the maximum expected accuracy

(MEA) alignments. Extensive performance validation using various metrics shows that

the CSRW and CUFID models can accurately estimate the node-to-node correspondences

for large-scale biological networks and it can lead accurate and reliable comparison results.

We also applied the proposed models to a network querying problem in order to confirm

whether the proposed models can accurately estimate node correspondences even though

the size of networks to be compared is significantly different. Here, to deal with the struc-

tural variations (i.e., node insertions and deletions) across the conserved subnetworks, we

adopt a seed-and extension approach to identify low conductance subnetworks. We select

the seed network based on the estimated node correspondence scores through proposed

random walk models, and iteratively extended the seed network by adding the node that

can maximally minimize the conductance of the extending seed network. Finally, we re-

moved less-relevant nodes. Experimental results using real biological complexes show that

proposed method can lead reliable querying results with enhanced biological significance.
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APPENDIX A

LIST OF DATABASES FOR COMPARATIVE NETWORK ANALYSIS

Databases for protein-protein interactions for various species are listed in Table A.1,

and the list of databases for known biological complexes are provided in Table A.2. Addi-

tionally, databases for protein sequence and homology are listed in Table A.3

Name of database Link
BioGrid [43] https://thebiogrid.org
ComPPI [86] http://comppi.linkgroup.hu

DIP [44] http://dip.doe-mbi.ucla.edu/dip/Main.cgi
HPRD [45] http://www.hprd.org

HitPredict [87] http://hintdb.hgc.jp/htp/index.html
IsoBase [42] http://cb.csail.mit.edu/cb/mna/isobase/
IntAct [47] http://www.ebi.ac.uk/intact/
MINT [46] http://mint.bio.uniroma2.it
MIPS [88] http://mips.helmholtz-muenchen.de/proj/ppi/

STRING [69] https://string-db.org

Table A.1: List of available databases for PPI network analysis.

Database for known biological complexes Link Target Species
CORUM [70] http://mips.helmholtz-muenchen.de/corum/ Human, Mouse, and Rat
CYC2008 [89] http://wodaklab.org/cyc2008/ Yeast (S. cerevisiae)

DroID [90] http://www.droidb.org/Index.jsp Fly (Drosophila)
FlyBase [91] http://flybase.org Fly (Drosophila)

Organelle DB [92] http://labs.mcdb.lsa.umich.edu/organelledb/index.php 138 organisms
SGD [71] http://www.yeastgenome.org Yeast (S. cerevisiae)

WormBase [93] http://www.wormbase.org Worm (C. elegans)

Table A.2: Databases for known biological complexes.
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Name of database Link
UnitProt [94] http://www.uniprot.org

PDB [95] http://www.rcsb.org/pdb/home/home.do
wwPDB [96] http://pfam.xfam.org

Pfam [97] http://xfam.org
SBKB [98] http://sbkb.org

Table A.3: Databases for proteins.
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APPENDIX B

SOFTWARE AVAILABILITY

Table B.1 lists online links for the proposed algorithms.

Proposed algorithms Link
SEQUOIA [18] http://www.ece.tamu.edu/ bjyoon/SEQUOIA/

CUFID-align [77] http://www.ece.tamu.edu/ bjyoon/CUFID/
CUFID-query http://www.ece.tamu.edu/ bjyoon/CUFID/

Table B.1: List of softwares proposed in this dissertation.

114


