45 research outputs found

    The First Structure–Activity Relationship Studies for Designer Receptors Exclusively Activated by Designer Drugs

    Get PDF
    Over the past decade, two independent technologies have emerged and been widely adopted by the neuroscience community for remotely controlling neuronal activity: optogenetics which utilize engineered channelrhodopsin and other opsins, and chemogenetics which utilize engineered G protein-coupled receptors (Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)) and other orthologous ligand–receptor pairs. Using directed molecular evolution, two types of DREADDs derived from human muscarinic acetylcholine receptors have been developed: hM3Dq which activates neuronal firing, and hM4Di which inhibits neuronal firing. Importantly, these DREADDs were not activated by the native ligand acetylcholine (ACh), but selectively activated by clozapine N-oxide (CNO), a pharmacologically inert ligand. CNO has been used extensively in rodent models to activate DREADDs, and although CNO is not subject to significant metabolic transformation in mice, a small fraction of CNO is apparently metabolized to clozapine in humans and guinea pigs, lessening the translational potential of DREADDs. To effectively translate the DREADD technology, the next generation of DREADD agonists are needed and a thorough understanding of structure–activity relationships (SARs) of DREADDs is required for developing such ligands. We therefore conducted the first SAR studies of hM3Dq. We explored multiple regions of the scaffold represented by CNO, identified interesting SAR trends, and discovered several compounds that are very potent hM3Dq agonists but do not activate the native human M3 receptor (hM3). We also discovered that the approved drug perlapine is a novel hM3Dq agonist with >10 000-fold selectivity for hM3Dq over hM3

    Serotonin Receptors as Therapeutic Targets for Autism Spectrum Disorder Treatment

    No full text
    Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by repetitive and stereotyped behaviors as well as difficulties with social interaction and communication. According to reports for prevalence rates of ASD, approximately 1~2% of children worldwide have been diagnosed with ASD. Although there are a couple of FDA (Food and Drug Administration)—approved drugs for ASD treatment such as aripiprazole and risperidone, they are efficient for alleviating aggression, hyperactivity, and self-injury but not the core symptoms. Serotonin (5-hydroxytryptamine, 5-HT) as a neurotransmitter plays a crucial role in the early neurodevelopmental stage. In particular, 5-HT has been known to regulate a variety of neurobiological processes including neurite outgrowth, dendritic spine morphology, shaping neuronal circuits, synaptic transmission, and synaptic plasticity. Given the roles of serotonergic systems, the 5-HT receptors (5-HTRs) become emerging as potential therapeutic targets in the ASD. In this review, we will focus on the recent development of small molecule modulators of 5-HTRs as therapeutic targets for the ASD treatment

    Modulation of Serotonin Receptors in Neurodevelopmental Disorders: Focus on 5-HT7 Receptor

    No full text
    Since neurodevelopmental disorders (NDDs) influence more than 3% of children worldwide, there has been intense investigation to understand the etiology of disorders and develop treatments. Although there are drugs such as aripiprazole, risperidone, and lurasidone, these medications are not cures for the disorders and can only help people feel better or alleviate their symptoms. Thus, it is required to discover therapeutic targets in order to find the ultimate treatments of neurodevelopmental disorders. It is suggested that abnormal neuronal morphology in the neurodevelopment process is a main cause of NDDs, in which the serotonergic system is emerging as playing a crucial role. From this point of view, we noticed the correlation between serotonin receptor subtype 7 (5-HT7R) and NDDs including autism spectrum disorder (ASD), fragile X syndrome (FXS), and Rett syndrome (RTT). 5-HT7R modulators improved altered behaviors in animal models and also affected neuronal morphology via the 5-HT7R/G12 signaling pathway. Through the investigation of recent studies, it is suggested that 5-HT7R could be a potential therapeutic target for the treatment of NDDs

    Facile synthesis of 4″- O

    No full text

    Facile synthesis of 4″-<i>O</i>-alkyl-(–)-EGCG derivatives through regioselective deacetylative alkylation

    No full text
    <p>Therapeutic potential of the D-ring methyl ethers of (–)-epigallocatechin-3-gallate [(–)-EGCG] warrants extensive structure–activity relationship study of various D-ring ethers of (–)-EGCG but, for this purpose, efficient synthetic strategy needs to be developed. In this study, efficient preparation of the 4″-<i>O</i>-alkyl-(–)-EGCGs (<b>4a</b>–<b>e</b>) was demonstrated using KI/K<sub>2</sub>CO<sub>3</sub>-promoted deacetylative alkylation of peracetyl (–)-EGCG, which could be broadly utilized for the preparation of various D-ring alkyl ethers of (–)-EGCG and thereby extensive structure–activity relationship study.</p

    Synthesis of Novel Dihydropyridothienopyrimidin-4,9-dione Derivatives

    No full text
    A novel molecular scaffold, dihydropyridothienopyrimidin-4,9-dione, was synthesized from benzylamine or p-methoxybenzylamine in six steps involving successive ring closure to form a fused ring system composed of dihydropyridone, thiophene and pyrimidone. The pharmacological versatility of the dihydropyridothenopyrimidin-4,9-dione scaffold was demonstrated by inhibitory activity against metabotropic glutamate receptor subtype 1 (mGluR1), which shows that the title compounds can serve as an interesting scaffold for the discovery of potential bioactive molecules for the treatment of human diseases
    corecore