811 research outputs found
Vestibular Neuritis With Minimal Canal Paresis: Characteristics and Clinical Implication
Objectives To analyze the clinical characteristics of vestibular neuritis patients with minimal canal paresis (canal paresis <25%). Methods Patients clinically diagnosed with vestibular neuritis and treated at our institute (n=201) underwent otoneurological examination and vestibular function tests. Patients were categorized in terms of the results of caloric testing (canal paresis<25%, n=58; canal paresis≥25%, n=143). Clinical characteristics and laboratory outcomes were compared between two groups. Results Existence of underlying diseases, preceding symptoms, and direction of spontaneous nystagmus were not different between the groups. The mean duration of spontaneous nystagmus was shortest in the minimal canal paresis group (P<0.001) and the direction of spontaneous nystagmus changed more frequently in this group (P<0.001) during recovery. Among the subgroup with minimal canal paresis, only 29.5% had an abnormal finding on the rotatory chair test, as compared to 81.5% of the canal paresis group. The minimal canal paresis group showed higher sensory organization test scores in computerized dynamic posturography. Conclusion Patients with minimal canal paresis (canal paresis <25%) show similar clinical manifestations as conventional vestibular neuritis patients, but have faster recovery of symptoms and a higher incidence of recovery nystagmus. This finding support that the minimal canal paresis could be considered as a milder type of vestibular neuritis
Small-sized flat-tip CNT emitters for miniaturized X-ray tubes
Small tip-type CNT emitters with the diameter of 0.8 mm were fabricated for miniaturized X-ray tubes. The CNT emitters were prepared by dropping CNTs and silver nanoparticles on a flat surface of a W metal tip followed by annealing at 800 • C for 2 h under vacuum. The CNT emitters exhibit good field emission properties with the threshold electric field of 1.15 V/μm and the field enhancement factor of 12,050. CNTs were well attached to a flat W tip surface without coating on the side plane of the tip, and thus beam divergence could be minimized. Consequently, a miniaturized X-ray tube with the inner diameter of 5 mm was successfully demonstrated using the tip-type CNT emitter. Nanostructured materials are widely used for electron emitters because of their good field-emission properties • C can induce a serious heating of the small X-ray tube. High operating temperature of miniaturized X-ray tubes limits the applications of the tubes, for example, to brachytherapy. Consequently, a cooling device is required for the operation, but the cooling device increases the size of the miniaturized X-ray tube. In this sense, CNT emitters are proper electron sources because electrons are generated through field emission, and hence the cold emission process does not increase the temperature of the X-ray tube. In addition, CNT emitters are also promising electron emitters for microfocus X-ray tube
Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines
<p>Abstract</p> <p>Background</p> <p>Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as anti-tumor activity. The aim of the present work was to study the growth inhibition of tumor cells by butanol extract of <it>Bifidobacterium adolescentis </it>isolated from healthy young Koreans.</p> <p>Methods</p> <p>The anti-proliferative activity of <it>B. adolescentis </it>isolates was assessed by XTT assays on three human colon cancer cell lines (Caco-2, HT-29, and SW480). The effects of <it>B. adolescentis </it>SPM0212 butanol extract on tumor necrosis factor-α (TNF-α) and nitric oxide (NO) production were tested using the murine macrophage RAW 264.7 cell line.</p> <p>Results</p> <p>The butanol extract of <it>B. adolescentis </it>SPM0212 dose-dependently inhibited the growth of Caco-2, HT-29, and SW480 cells by 70%, 30%, and 40%, respectively, at 200 μg/mL. Additionally, the butanol extract of <it>B. adolescentis </it>SPM0212 induced macrophage activation and significantly increased the production of TNF-α and NO, which regulate immune modulation and are cytotoxic to tumor cells.</p> <p>Conclusion</p> <p>The butanol extract of <it>B. adolescentis </it>SPM0212 increased activity of the host immune system and may improve human health by helping to prevent colon cancer as a biological response modifier.</p
Small-Sized Flat-Tip CNT Emitters for Miniaturized X-Ray Tubes
Small tip-type CNT emitters with the diameter of 0.8 mm were fabricated for miniaturized X-ray tubes. The CNT emitters were prepared by dropping CNTs and silver nanoparticles on a flat surface of a W metal tip followed by annealing at 800°C for 2 h under vacuum. The CNT emitters exhibit good field emission properties with the threshold electric field of 1.15 V/μm and the field enhancement factor of 12,050. CNTs were well attached to a flat W tip surface without coating on the side plane of the tip, and thus beam divergence could be minimized. Consequently, a miniaturized X-ray tube with the inner diameter of 5 mm was successfully demonstrated using the tip-type CNT emitter
Deletion of PLC??1 in GABAergic neurons increases seizure susceptibility in aged mice
Synaptic inhibition plays a fundamental role in the information processing of neural circuits. It sculpts excitatory signals and prevents hyperexcitability of neurons. Owing to these essential functions, dysregulated synaptic inhibition causes a plethora of neurological disorders, including epilepsy, autism, and schizophrenia. Among these disorders, epilepsy is associated with abnormal hyperexcitability of neurons caused by the deficits of GABAergic neuron or decreased GABAergic inhibition at synapses. Although many antiepileptic drugs are intended to improve GABA-mediated inhibition, the molecular mechanisms of synaptic inhibition regulated by GABAergic neurons are not fully understood. Increasing evidence indicates that phospholipase C??1 (PLC??1) is involved in the generation of seizure, while the causal relationship between PLC??1 and seizure has not been firmly established yet. Here, we show that genetic deletion of PLC??1 in GABAergic neurons leads to handling-induced seizure in aged mice. In addition, aged Plcg1F/F; Dlx5/6-Cre mice exhibit other behavioral alterations, including hypoactivity, reduced anxiety, and fear memory deficit. Notably, inhibitory synaptic transmission as well as the number of inhibitory synapses are decreased in the subregions of hippocampus. These findings suggest that PLC??1 may be a key determinant of maintaining both inhibitory synapses and synaptic transmission, potentially contributing to the regulation of E/I balance in the hippocampus
Exosomes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Promote Epidermal Barrier Repair by Inducing de Novo Synthesis of Ceramides in Atopic Dermatitis.
Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes' effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-α, IFN-γ, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD
Piezoelectric energy harvesting using solar radiation pressure enhanced by surface plasmons at visible to near-infrared wavelengths
A light-pressure electric generator (LPEG) device, which harvests piezoelectric energy using solar radiation enhanced by surface plasmons (SPs), is demonstrated. The design of the device is motivated by the need to drastically increase the power output of existing piezoelectric devices based on SP resonance. The solar radiation pressure can be used as an energy source by employing an indium tin oxide (ITO)/Ag double layer to excite the SPs in the near-infrared (NIR) and visible light regions. The LPEG with the ITO layer generates an open-circuit voltage of 295 mV, a short-circuit current of 3.78 μA, and a power of 532.3 μW cm−2 under a solar simulator. The power of the LPEG device incorporating the ITO layer increased by 38% compared to the device without the ITO layer. The effect of the ITO layer on the electrical output of the LPEG was analyzed in detail by measuring the electrical output when visible and NIR lights are incident on the device using optical bandpass filters. In addition, finite-difference time-domain simulation confirmed that the pressure of the incident light can be further amplified by the ITO/Ag double layer. Finally, the energy harvested from the LPEG was stored in capacitors to successfully illuminate red light-emitting diodes
Establishment of an experimental model of ovalbumin-induced atopic dermatitis in canines
IntroductionA reliable standard model is required to evaluate the efficacy of new drugs for companion animals, especially dogs. Canine atopic dermatitis (cAD), also known as allergic inflammatory skin disease, is a common condition. Currently, the house dust mite animal model is used in the research of cAD; however, this model exhibits significant individual variation and is difficult to standardize. In this study, we used ovalbumin as an antigen to sensitize and stimulate dogs, thereby establishing a stable model mimicking the T-helper 2 (Th2) response seen in cAD. Our objective was to create a cAD model that could be employed to evaluate the efficacy of novel drugs and mimic the Th2 dominant allergic response observed in the pathogenesis of atopic dermatitis of dogs.MethodsIn this study, six beagles were used. Normal saline was applied to two animals, and ovalbumin to four, on their dorsal skin.ResultsThe ovalbumin-treated groups exhibited clinical cAD symptoms, such as pruritus and erythema. Moreover, plasma levels of the cAD markers immunoglobulin E and CCL17 chemokine were higher in the ovalbumin-treated group than in the vehicle control group. The skin thickness of the epidermis was significantly increased in the ovalbumin-treated group, with infiltration of inflammatory cells observed in the thickened dermis region. In conclusion, treatment of canine skin with an optimal concentration of ovalbumin induced typical cAD-like symptoms, and histological and molecular analyses confirmed an enhanced Th2-related immune response.ConclusionTherefore, we successfully established a suitable Th2-dominant response mimicking cAD, which will facilitate targeted research of atopic dermatitis in dogs
- …