37 research outputs found

    A Patient With Dysphagia due to an Aortic Aneurysm

    Get PDF
    Dysphagia aortica is difficulty in swallowing caused by extrinsic compression of the esophagus due to an ectatic, tortuous, or aneurysmatic atherosclerotic thoracic aorta. This condition is very uncommon, and it is usually associated with old age, women with short stature, hypertension, and kyphosis. We report herein a case involving a patient with dysphagia who had an aortic aneurysm

    Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations

    Get PDF
    Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), are present in most gliomas and secondary glioblastomas, but are rare in other neoplasms. IDH1/2 mutations are heterozygous, and affect a single arginine residue. Recently, IDH1 mutations were identified in 8% of acute myelogenous leukemia (AML) patients. A glioma study revealed that IDH1 mutations cause a gain-of-function, resulting in the production and accumulation of 2-hydroxyglutarate (2-HG). Genotyping of 145 AML biopsies identified 11 IDH1 R132 mutant samples. Liquid chromatography-mass spectrometry metabolite screening revealed increased 2-HG levels in IDH1 R132 mutant cells and sera, and uncovered two IDH2 R172K mutations. IDH1/2 mutations were associated with normal karyotypes. Recombinant IDH1 R132C and IDH2 R172K proteins catalyze the novel nicotinamide adenine dinucleotide phosphate (NADPH)–dependent reduction of α-ketoglutarate (α-KG) to 2-HG. The IDH1 R132C mutation commonly found in AML reduces the affinity for isocitrate, and increases the affinity for NADPH and α-KG. This prevents the oxidative decarboxylation of isocitrate to α-KG, and facilitates the conversion of α-KG to 2-HG. IDH1/2 mutations confer an enzymatic gain of function that dramatically increases 2-HG in AML. This provides an explanation for the heterozygous acquisition of these mutations during tumorigenesis. 2-HG is a tractable metabolic biomarker of mutant IDH1/2 enzyme activity

    Characteristics of pediatric rhabdomyolysis and the associated risk factors for acute kidney injury: a retrospective multicenter study in Korea

    Get PDF
    Background The clinical features of pediatric rhabdomyolysis differ from those of the adults with rhabdomyolysis; however, multicenter studies are lacking. This study aimed to investigate the characteristics of pediatric rhabdomyolysis and reveal the risk factors for acute kidney injury (AKI) in such cases. Methods This retrospective study analyzed the medical records of children and adolescents diagnosed with rhabdomyolysis at 23 hospitals in South Korea between January 2007 and December 2016. Results Among 880 patients, those aged 3 to 5 years old composed the largest subgroup (19.4%), and all age subgroups were predominantly male. The incidence of AKI was 11.3%. Neurological disorders (53.6%) and infection (39.0%) were the most common underlying disorder and cause of rhabdomyolysis, respectively. The median age at diagnosis in the AKI subgroup was older than that in the non-AKI subgroup (12.2 years vs. 8.0 years). There were no significant differences in body mass index, myalgia, dark-colored urine, or the number of causal factors between the two AKI-status subgroups. The multivariate logistic regression model indicated that the following factors were independently associated with AKI: multiorgan failure, presence of an underlying disorder, strong positive urine occult blood, increased aspartate aminotransferase and uric acid levels, and reduced calcium levels. Conclusions Our study revealed characteristic clinical and laboratory features of rhabdomyolysis in a Korean pediatric population and highlighted the risk factors for AKI in these cases. Our findings will contribute to a greater understanding of pediatric rhabdomyolysis and may enable early intervention against rhabdomyolysis-induced AKI

    Joint User Association and Resource Allocation in Small Cells with Limited Backhaul Capacity

    No full text
    User association and resource allocation for downlink orthogonal frequency division multiplexing are jointly optimized in small cells networks with limited backhaul. In particular, per resource block resource allocation under the backhaul constraint is formulated in pursuit of maximizing proportional fairness, which leads to an integer problem requiring prohibitive computational complexity to solve. We propose two suboptimal methods to solve the problem with feasible complexity. The sum-rate and computational complexity of the two proposed schemes are evaluated via numerical simulations and mathematical analysis, respectively, showing the trade-off between the sum-rate and complexity

    Efficient Screening Method for Resistance of Cucumber Cultivars to Fusarium oxysporum f. sp. cucumerinum

    No full text
    The study was performed to establish an efficient screening method for resistant cucumber to Fusarium oxysporum f. sp. cucumerinum. The isolate KR5 was identified as F. oxysporum f. sp. cucumerinum based on molecular analyses of ITS and TEF genes and host-specificity test on cucurbits including melon, oriental melon, cucumber, and watermelon. Then four cucumber and two rootstock cultivars showing different resistance degrees to the Fusarium wilt pathogen KR5 were selected. And development of Fusarium wilt of the six cultivars according to several conditions, including incubation temperature after inoculation, inoculum concentration, root wounding, and growth stages of seedlings, was investigated. Disease severity of Fusarium wilt on the resistant cultivars was changed with incubation temperatures after inoculation. The resistant cultivars showed the higher resistance when inoculated plants were kept at 25 or 30oC than at 20oC. Among four different growth stages of the seedlings, seven-day-old seedling represented the most difference of resistance and susceptibility to Fusarium wilt. From above results, we suggest that an efficient screening method for resistant cucumber to F. oxysporum f. sp. cucumerinum is to dip the non-cut roots of seven-day-old seedlings in spore suspension of 1.0 × 106-1.0 × 107 conidia/ml and to transplant the seedling into a non-infected soil, and then to incubate the inoculated plants in a growth room at 25oC for 3 weeks to develop Fusarium wilt

    Development of an Efficient Screening System for Resistance of Tomato Cultivars to Ralstonia solanacearum

    No full text
    This study was conducted to establish an efficient screening system for resistant tomato to bacterial wilt caused by Ralstonia solanacearum. Under several conditions such as inoculation methods, growth stages of tomato seedlings, inoculum concentrations, and incubating temperatures after inoculation, development of bacterial wilt on nine resistant or susceptible cultivars of tomato was investigated. To inoculate by drenching the non-cut roots with the bacterial suspension was better to distinguish resistance and susceptibility of tomato cultivars than by drenching the cut roots using scalpel. And ‘Hawaii7996’ a resistant tomato to R. solanacearum showed high resistance at all the tested conditions including growth stages (3-, 6-, 8-, 10-leaf stages), inoculum concentrations (OD600=0.1-0.4) and incubation temperatures (25, 30, 35°C). On the other hands, susceptible cultivars represented disease index of 3.7 and 3.9 at 6- and 8-leaf stages, respectively. At 3- and 10-leaf stages, the cultivars demonstrated lower disease severity of 2.1 and 0.5, respectively, than at 6- and 8-leaf stages. When the inoculated seedlings were incubated in growth chambers of 25, 30 and 35°C, disease severity of susceptible cultivars was significantly greater at 30 and 35°C than at 25°C. In addition, the level of resistance of the tomato cultivars was not significantly affected by inoculum concentrations of OD600=0.1–0.4. On the basis of the results, we suggest an efficient screening method to measure resistance level of tomato cultivars to bacterial wilt. The eight-leaf stage seedlings transplanted 7 days before inoculation, are inoculated with R. solanacearum by drenching the non-cut roots with a bacterial suspensions (OD600=0.4) to give inoculum volume of 50 ml/soil l. The inoculated plants are incubated in a growth room at 30°C for 12-13 days with 12-hour light a day

    Evaluation of Cabbage- and Broccoli-genetic Resources for Resistance to Clubroot and Fusarium Wilt

    No full text
    Clubroot and Fusarium wilt of cole crops (Brassica oleracea L.) are destructive diseases which for many years has brought a decline in quality and large losses in yields all over the world. The breeding of resistant cultivars is an effective approach to reduce the use of chemical fungicides and minimize crop losses. This study was conducted to evaluate the resistance of 60 cabbage (B. oleracea var. capitata) and 6 broccoli (B. oleracea var. italica) lines provided by The RDA-Genebank Information Center to clubroot and Fusarium wilt. To investigate resistance to clubroot, seedlings of the genetic resources were inoculated with Plasmodiophora brassicae by drenching the roots with a mixed spore suspension (1 : 1) of two isolates. Of the tested genetic resources, four cabbage lines were moderately resistant and ‘K166220’ represented the highest resistance to P. brassicae. The others were susceptible to clubroot. On the other hand, to select resistant plants to Fusarium wilt, the genetic resources were inoculated with Fusarium oxysporum f. sp. conglutinans by dipping the roots in spore suspension of the fungus. Among them, 17 cabbage and 5 broccoli lines were resistant, 16 cabbage lines were moderately resistant, and the others were susceptible to Fusarium wilt. Especially, three cabbage (‘IT227115’, ‘K161791’, ‘K173350’) and two broccoli (‘IT227100’, ‘IT227099’) lines were highly resistant to the fungus. We suggest that the resistant genetic resources can be used as a basic material for resistant B. oleracea breeding system against clubroot and Fusarium wilt
    corecore