72 research outputs found

    Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery

    Get PDF
    Chromosome 1 of Vibrio vulnificus tends to contain larger portion of essential or housekeeping genes on the basis of the genomic analysis and gene knockout experiments performed in this study, while its chromosome 2 seems to have originated and evolved from a plasmid.The genome-scale metabolic network model of V. vulnificus was reconstructed based on databases and literature, and was used to identify 193 essential metabolites.Five essential metabolites finally selected after the filtering process are 2-amino-4-hydroxy-6-hydroxymethyl-7,8-dihydropteridine (AHHMP), D-glutamate (DGLU), 2,3-dihydrodipicolinate (DHDP), 1-deoxy-D-xylulose 5-phosphate (DX5P), and 4-aminobenzoate (PABA), which were predicted to be essential in V. vulnificus, absent in human, and are consumed by multiple reactions.Chemical analogs of the five essential metabolites were screened and a hit compound showing the minimal inhibitory concentration (MIC) of 2 Ī¼g/ml and the minimal bactericidal concentration (MBC) of 4 Ī¼g/ml against V. vulnificus was identified

    Microvasculature remodeling in the mouse lower gut during inflammaging

    Get PDF
    Inflammaging is defined as low-grade, chronic, systemic inflammation in aging, in the absence of overt infection. Age-associated deterioration of gastrointestinal function could be ascribed to the inflammaging, although evidence is yet to emerge. Here we show that microvessels in aging mouse intestine were progressively deprived of supportive structures, microvessel-associated pericytes and adherens junction protein vascular endothelial (VE)-cadherin, and became leaky. This alteration was ascribed to up-regulation of angiopoetin-2 in microvascular endothelial cells. Up-regulation of the angiopoietin-2 was by TNF-Ī±, originated from M2-like residential CD206 + macrophages, proportion of which increases as animal ages. It was concluded that antigenic burdens encountered in intestine throughout life create the condition of chronic stage of inflammation, which accumulates M2-like macrophages expressing TNF-Ī±. The TNF-Ī± induces vascular leakage to facilitate recruitment of immune cells into intestine under the chronic inflammatory setting. Ā© Author(s) 2017.1

    L-Asparaginase delivered by Salmonella typhimurium suppresses solid tumors

    Get PDF
    Bacteria can be engineered to deliver anticancer proteins to tumors via a controlled expression system that maximizes the concentration of the therapeutic agent in the tumor. L-asparaginase (L-ASNase), which primarily converts asparagine to aspartate, is an anticancer protein used to treat acute lymphoblastic leukemia. In this study, Salmonellae were engineered to express L-ASNase selectively within tumor tissues using the inducible araBAD promoter system of Escherichia coli. Antitumor efficacy of the engineered bacteria was demonstrated in vivo in solid malignancies. This result demonstrates the merit of bacteria as cancer drug delivery vehicles to administer cancer-starving proteins such as L-ASNase to be effective selectively within the microenvironment of cancer tissue

    Mitochondrial metabolic reprograming via BRAF inhibition ameliorates senescence

    No full text
    Senescence is defined as irreversible cell cycle arrest and constitutes a major driving force in diseases related to aging or premature aging. Recent studies indicate that activation of the serine/threonine protein kinase B-raf (BRAF) plays important roles in oncogene-induced senescence. However, it remains elusive whether BRAF inhibition might be effective for abrogating senescence. In this study, we assessed several BRAF inhibitors to identify compounds that ameliorate senescence and revealed SB590885 as an effective agent. Senescence-ameliorating effect upon BRAF inhibition was evident from the observation that SB590885 treatment increased cellular proliferation but diminished senescent phenotypes. Moreover, BRAF inhibition induced the mitochondrial functional recovery along with the metabolic reprogramming, which comprises two salient features that are altered in senescent cells. Furthermore, mitochondrial metabolic reprogramming via BRAF inhibition was a prerequisite for senescence amelioration. Taken together, our data revealed a novel mechanism in which senescence amelioration is mediated by mitochondrial metabolic reprogramming upon BRAF inhibition. Ā© 2019 Elsevier Inc.1

    Selective fluorescent chemosensor for the bacterial alarmone (p)ppGpp

    No full text
    We have developed the first selective fluorescent chemosensor (PyDPA) for (p)ppGpp, a bacterial and plant alarmone. By using pyrene-excimer fluorescence, PyDPA shows very good selectivity for (p)ppGpp from among other nucleotides in water. PyDPA was used for the real-time detection of in vitro ppGpp synthesis by bacterial ribosomal complexesclose636

    Repression of deoP2 in Escherichia coli by CytR: conversion of a transcription activator into a repressor

    No full text
    In the deoP2 promoter of Escherichia coli, a transcription activator, cAMPā€“CRP, binds at two sites, centered at ā€“41.5 and ā€“93.5 from the start site of transcription, while a repressor, CytR, binds to a space between the two cAMPā€“CRP complexes. The mechanisms for the cAMPā€“CRP-mediated transcription activation and CytR-mediated transcription repression were investigated in vitro using purified components. We classified the deoP2 promoter as a classĀ II cAMPā€“CRP-dependent promoter, primarily by the action of cAMPā€“CRP at the downstream site. Interestingly, we also found that deoP2 carries an ā€˜UP-elementā€™ immediately upstream of the downstream cAMPā€“CRP site. The UP-element overlaps with the DNA site for CytR. However, it was observed that CytR functions with the RNA polymerase devoid of the C-terminal domain of the Ī±-subunit as well as with intact RNA polymerase. The mechanism of repression by CytR proposed in this study is that the cAMPā€“CRP bound at ā€“41.5 undergoes an allosteric change upon direct interaction with CytR such that it no longer maintains a productive interaction with the N-terminal domain of Ī±, but instead acts as a repressor to interfere with RNA polymerase acting on deoP2

    Repression and activation of promoter-bound RNA polymerase activity by Gal repressor

    No full text
    Many promoter-speciĀ®c regulators modulate gene expression either by enhancing or by inhibiting initiation of transcription when needed. It has been shown that activators of transcription bind t

    Salmonella enterica Serovar Gallinarum Requires ppGpp for Internalization and Survival in Animal Cells ā–æ

    No full text
    To elucidate the pathogenic mechanism of Salmonella enterica serovar Gallinarum, we examined the expression of the genes encoded primarily in Salmonella pathogenicity island 1 (SPI-1) and SPI-2. These genes were found to be induced as cultures entered stationary phase under high- and low-oxygen growth conditions, as also observed for Salmonella serovar Typhimurium. In contrast, Salmonella serovar Gallinarum in the exponential growth phase most efficiently internalized cultured animal cells. Analysis of mutants defective in SPI-1 genes, SPI-2 genes, and others implicated in early stages of infection revealed that SPI-1 genes were not involved in the internalization of animal cells by Salmonella serovar Gallinarum. Following entry, however, Salmonella serovar Gallinarum was found to reside in LAMP1-positive vacuoles in both phagocytic and nonphagocytic cells, although internalization was independent of SPI-1. A mutation that conferred defects in ppGpp synthesis was the only one found to affect animal cell internalization by Salmonella serovar Gallinarum. It was concluded that Salmonella serovar Gallinarum internalizes animal cells by a mechanism independent of SPI-1 genes but dependent on ppGpp. Intracellular growth also required ppGpp for the transcription of genes encoded in SPI-2

    A novel balanced-lethal host-vector system based on glmS.

    Get PDF
    During the last decade, an increasing number of papers have described the use of various genera of bacteria, including E. coli and S. typhimurium, in the treatment of cancer. This is primarily due to the facts that not only are these bacteria capable of accumulating in the tumor mass, but they can also be engineered to deliver specific therapeutic proteins directly to the tumor site. However, a major obstacle exists in that bacteria because the plasmid carrying the therapeutic gene is not needed for bacterial survival, these plasmids are often lost from the bacteria. Here, we report the development of a balanced-lethal host-vector system based on deletion of the glmS gene in E. coli and S. typhimurium. This system takes advantage of the phenotype of the GlmS(-) mutant, which undergoes lysis in animal systems that lack the nutrients required for proliferation of the mutant bacteria, D-glucosamine (GlcN) or N-acetyl-D-glucosamine (GlcNAc), components necessary for peptidoglycan synthesis. We demonstrate that plasmids carrying a glmS gene (GlmS(+)p) complemented the phenotype of the GlmS(-) mutant, and that GlmS(+) p was maintained faithfully both in vitro and in an animal system in the absence of selection pressure. This was further verified by bioluminescent signals from GlmS (+)pLux carried in bacteria that accumulated in grafted tumor tissue in a mouse model. The signal was up to several hundred-fold stronger than that from the control plasmid, pLux, due to faithful maintenance of the plasmid. We believe this system will allow to package a therapeutic gene onto an expression plasmid for bacterial delivery to the tumor site without subsequent loss of plasmid expression as well as to quantify bioluminescent bacteria using in vivo imaging by providing a direct correlation between photon flux and bacterial number
    • ā€¦
    corecore