37 research outputs found
経胎盤移植系を用いた血液キメラマウスの作製
この博士論文は内容の要約のみの公開(または一部非公開)になっています筑波大学 (University of Tsukuba)201
Regional TMPRSS2 V197M Allele Frequencies Are Correlated with COVID-19 Case Fatality Rates.
Coronavirus disease, COVID-19 (coronavirus disease 2019), caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has a higher case fatality rate in European countries than in others, especially East Asian ones. One potential explanation for this regional difference is the diversity of the viral infection efficiency. Here, we analyzed the allele frequencies of a nonsynonymous variant rs12329760 (V197M) in the TMPRSS2 gene, a key enzyme essential for viral infection and found a significant association between the COVID-19 case fatality rate and the V197M allele frequencies, using over 200,000 present-day and ancient genomic samples. East Asian countries have higher V197M allele frequencies than other regions, including European countries which correlates to their lower case fatality rates. Structural and energy calculation analysis of the V197M amino acid change showed that it destabilizes the TMPRSS2 protein, possibly negatively affecting its ACE2 and viral spike protein processing
Klf5 suppresses ERK signaling in mouse pluripotent stem cells
Mouse embryonic stem cells (ESCs) are pluripotent stem cells, which have the ability to differentiate into all three germ layers: mesoderm, endoderm, and ectoderm. Proper levels of phosphorylated extracellular signal-regulated kinase (pERK) are critical for maintaining pluripotency, as elevated pERK evoked by fibroblast growth factor (FGF) receptor activation results in differentiation of ESCs, while, conversely, reduction of pERK by a MEK inhibitor maintains a pluripotent ground state. However, mechanisms underlying proper control of pERK levels in mouse ESCs are not fully understood. Here, we find that Klf5, a Krüppel-like transcription factor family member, is a component of pERK regulation in mouse ESCs. We show that ERK signaling is overactivated in Klf5-KO ESCs and the overactivated ERK in Klf5-KO ESCs is suppressed by the introduction of Klf5, but not Klf2 or Klf4, indicating a unique role for Klf5 in ERK suppression. Moreover, Klf5 regulates Spred1, a negative regulator of the FGF-ERK pathway. Klf5 also facilitates reprogramming of EpiSCs into a naïve state in combination with a glycogen synthase kinase 3 inhibitor and LIF, and in place of a MEK inhibitor. Taken together, these results show for the first time that Klf5 has a unique role suppressing ERK activity in mouse ESCs
MafB is a critical regulator of complement component C1q
The transcription factor MafB is expressed by monocytes and macrophages. Efferocytosis (apoptotic cell uptake) by macrophages is important for inhibiting the development of autoimmune diseases, and is greatly reduced in Mafb-deficient macrophages. Here, we show the expression of the first protein in the classical complement pathway C1q is important for mediating efferocytosis and is reduced in Mafb-deficient macrophages. The efferocytosis defect in Mafb-deficient macrophages can be rescued by adding serum from wild-type mice, but not by adding serum from C1q-deficient mice. By hemolysis assay we also show that activation of the classical complement pathway is decreased in Mafb-deficient mice. In addition, MafB overexpression induces C1q-dependent gene expression and signals that induce C1q genes are less effective in the absence of MafB. We also show that Mafb-deficiency can increase glomerular autoimmunity, including anti-nuclear antibody deposition. These results show that MafB is an important regulator of C1q
MafB deficiency accelerates the development of obesity in mice
MafB, a transcription factor expressed selectively in macrophages, has important roles in some macrophage-related diseases, especially in atherosclerosis. In this study, we investigated the mechanism by which hematopoietic-specific MafB deficiency induces the development of obesity. Wild-type and hematopoietic cell-specific Mafb-deficient mice were fed a high-fat diet for 10 weeks. The Mafb-deficient mice exhibited higher body weights and faster rates of body weight increase than control mice. The Mafb-deficient mice also had a higher percentage of body fat than the wild-type mice, due to increased adipocyte size and serum cholesterol levels. Reverse transcription-PCR analysis showed a reduction in apoptosis inhibitor of macrophage (AIM) in Mafb-deficient adipose tissue. AIM is known as an inhibitor of lipogenesis in adipocytes and is expressed in adipose tissue macrophages. Collectively, our data suggest that Mafb deficiency in hematopoietic cells accelerates the development of obesity
Down-regulation of GATA1-dependent erythrocyte-related genes in the spleens of mice exposed to a space travel
Secondary lymphoid organs are critical for regulating acquired immune responses. The aim of this study was to characterize the impact of spaceflight on secondary lymphoid organs at the molecular level. We analysed the spleens and lymph nodes from mice flown aboard the International Space Station (ISS) in orbit for 35 days, as part of a Japan Aerospace Exploration Agency mission. During flight, half of the mice were exposed to 1 g by centrifuging in the ISS, to provide information regarding the effect of microgravity and 1 g exposure during spaceflight. Whole-transcript cDNA sequencing (RNA-Seq) analysis of the spleen suggested that erythrocyte-related genes regulated by the transcription factor GATA1 were significantly down-regulated in ISS-flown vs. ground control mice. GATA1 and Tal1 (regulators of erythropoiesis) mRNA expression was consistently reduced by approximately half. These reductions were not completely alleviated by 1 g exposure in the ISS, suggesting that the combined effect of space environments aside from microgravity could down-regulate gene expression in the spleen. Additionally, plasma immunoglobulin concentrations were slightly altered in ISS-flown mice. Overall, our data suggest that spaceflight might disturb the homeostatic gene expression of the spleen through a combination of microgravity and other environmental changes
Effect of Preoperative Education using Multimedia on Pain, Uncertainty, Anxiety and Depression in Hysterectomy Patients
PURPOSE: The purpose of this study was to examine the effect of preoperative education using multimedia on level of pain, uncertainty, anxiety and depression in hysterectomy patients.
METHODS: A non-equivalent control group, with a pretest-posttest design was used in this study. The level of post operation pain, pre and post operation uncertainty, anxiety and depression of both the groups was measured. The experimental group was provided with preoperative education using multimedia on the preoperative day at the hospital. The control group was only given usual care. Data were analyzed using SPSS/WIN version 22.0 program.
RESULTS: Experimental group showed lower level of post-operation pain in 1 hour (t=-5.08, p<.001) and 24 hours (t=-5.20, p<.001) but not 48 hours (t=-0.91, p=.368). Uncertainty showed significant interaction effect of Group by Time (F=4.16, p=.018).
CONCLUSION: Preoperative education using multimedia for patients with hysterectomy would be effective in lowering patients' level of pain, uncertainty, anxiety and depression