673 research outputs found

    Purification and proteomic identification of putative upstream regulators of polo-like kinase-1 from mitotic cell extracts

    Get PDF
    AbstractPolo-like kinase-1 (Plk1) is phosphorylated on Thr210 for activation during mitosis. Here, we investigated the question of which kinase(s) is the specific upstream kinase of mitotic Plk1. Upstream kinases of Plk1 were purified from mitotic cell extracts through column chromatography procedures, and identified by mass spectrometry. Candidates for Plk1 kinase included p21-activated kinase, aurora A, and mammalian Ste20-like kinases. Immunoprecipitates of these proteins from mitotic cell extracts phosphorylated Plk1 on Thr210. Even if the activity of Aurora A was blocked with a specific inhibitor, Plk1 phosphorylation still occurred, suggesting that function of Plk1 could be controlled by these kinases for proper mitotic progression, as well as by Aurora A in very late G2 phase for the beginning of mitosis.Structured abstractMINT-7996332: PAK1(uniprotkb:Q13153)physically interacts(MI:0915) withPLK1(uniprotkb:P53350) bypull down(MI:0096)MINT-7996345: PAK3(uniprotkb:O75914)physically interacts(MI:0915) withPLK1(uniprotkb:P53350) bypull down(MI:0096

    Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts; Influence of Pt Contents

    Get PDF
    Fischer-Tropsch synthesis (FTS) reaction from syngas was investigated on the Pt-promoted cobalt-based hybrid catalysts prepared by co-precipitation method in a slurry of ZSM-5 (Si/Al=25). The hybrid catalysts were compared with each other for the different content of Pt as a promoter and are characterized using BET, XRD, H2-TPR and NH3-TPD. Their physicochemical properties were correlated with the activity and selectivity of the catalysts. As results, all hybrid catalysts show the C5-C9 yield (%) higher than that of Co-Al2O3/ZSM-5 catalyst. The Pt-promoted hybrid catalysts were found to be more promising towards production of the hydrocarbons of gasoline range and over C10.

    Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles

    Get PDF
    Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as those used to protect the vaccine antigen during drying, which contain high concentrations of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza virus in hyperosmotic solutions and used those findings to improve vaccine coating of microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis, we found that the virus underwent an initial shrinkage on the order of 10% by volume within 5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity. During this shrinkage, the virus envelope had very low osmotic water permeability (1 – 6×10−4 cm s–1) and high Arrhenius activation energy (Ea = 15.0 kcal mol–1), indicating that the water molecules diffused through the viral lipid membranes. After a quasi-stable state of approximately 20 s to 2 min, depending on the species and hypertonic osmotic strength difference of disaccharides, there was a second phase of viral shrinkage. At the highest osmotic strengths, this led to an undulating light scattering profile that appeared to be related to perturbation of the viral envelope resulting in loss of virus activity, as determined by in vitro hemagglutination measurements and in vivo immunogenicity studies in mice. Addition of carboxymethyl cellulose effectively prevented vaccine activity loss in vitro and in vivo, believed to be due to increasing the viscosity of concentrated sugar solution and thereby reducing osmotic stress during coating of microneedles. These results suggest that hyperosmotic solutions can cause biphasic shrinkage of whole inactivated influenza virus which can damage vaccine activity at high osmotic strength and that addition of a viscosity enhancer to the vaccine coating solution can prevent osmotically driven damage and thereby enable preparation of stable microneedle coating formulations for vaccination

    Investigation of Fire Damaged Concrete Using Nonlinear Resonance Vibration Method

    Get PDF
    Abstract-This paper attempts to evaluate the effect of fire damage on concrete by using nonlinear resonance vibration method, one of the nonlinear nondestructive method. Concrete exhibits not only nonlinear stress-strain relation but also hysteresis and discrete memory effect which are contained in consolidated materials. Hysteretic materials typically show the linear resonance frequency shift. Also, the shift of resonance frequency is changed according to the degree of micro damage. The degree of the shift can be obtained through nonlinear resonance vibration method. Five exposure scenarios were considered in order to make different internal micro damage. Also, the effect of post-fire-curing on fire-damaged concrete was taken into account to conform the change in internal damage. Hysteretic nonlinearity parameter was obtained by amplitudedependent resonance frequency shift after specific curing periods. In addition, splitting tensile strength was measured on each sample to characterize the variation of residual strength. Then, a correlation between the hysteretic nonlinearity parameter and residual strength was proposed from each test result

    Recurring gastrointestinal stromal tumor with splenic metastasis

    Get PDF
    Malignant gastrointestinal stromal tumors (GISTs) are rare non-epithelial, mesenchymal neoplasms of the gastrointestinal tract that metastasize or recur in 30% of patients who undergo surgical resection with curative intent. A 59-year-old man visited our hospital for an examination of a palpable mass in the left abdomen. Fourteen months prior to his visit, the patient underwent gastric wedge resection to remove a GIST of the gastric cardia. At the time of surgery, no evidence of metastatic disease was observed and the pathological interpretation was a high-risk GIST. A follow-up computed tomography scan of the abdomen revealed a partially necrotic solid mass (9.8 × 7.6 cm) and enhancing mass in the spleen (2.3 cm). On exploration, multiple masses were found in the liver, greater omentum, and mesentery. Here, we report a case of recurring GIST of the stomach that metastasized to the spleen. To the best of our knowledge, few reports of metastasis to the spleen exist

    A multicenter, prospective, randomized, controlled trial evaluating the safety and efficacy of intracoronary cell infusion mobilized with granulocyte colony-stimulating factor and darbepoetin after acute myocardial infarction: study design and rationale of the 'MAGIC cell-5-combination cytokine trial'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone marrow derived stem/progenitor cell transplantation after acute myocardial infarction is safe and effective for improving left ventricular systolic function. However, the improvement of left ventricular systolic function is limited. This study will evaluate novel stem/progenitor cell therapy with combination cytokine treatment of the long-acting erythropoietin analogue, darbepoetin, and granulocyte colony-stimulating factor (G-CSF) in patients with acute myocardial infarction.</p> <p>Methods</p> <p>The 'MAGIC Cell-5-Combination Cytokine Trial' is a multicenter, prospective, randomized, 3-arm, controlled trial with blind evaluation of the endpoints. A total of 116 patients will randomly receive one of the following three treatments: an intravenous darbepoetin infusion and intracoronary infusion of peripheral blood stem cells mobilized with G-CSF (n = 58), an intracoronary infusion of peripheral blood stem cells mobilized with G-CSF alone (n = 29), or conventional therapy (n = 29) at phase I. Patients with left ventricular ejection fraction < 45% at 6 months, in the patients who received stem cell therapy at phase I, will receive repeated cell therapy at phase II. The objectives of this study are to evaluate the safety and efficacy of combination cytokine therapy with erythropoietin and G-CSF (phase I) and repeated progenitor/stem cell treatment (phase II).</p> <p>Discussion</p> <p>This is the first study to evaluate the safety and efficacy of combination cytokine based progenitor/stem cell treatment.</p> <p>Trial registration</p> <p><url>http://www.ClinicalTrials.gov</url> identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00501917">NCT00501917</a>.</p

    Local Corrosion of the Oxide Passivation Layer during Cu Chemical Mechanical Polishing

    Get PDF
    In this article, we analyze the effect of complexing agents in Cu chemical mechanical polishing slurry on the formation of oxide and the evolution of stress. The passivation property and surface morphology of the oxide on the surface showed significant differences depending on the kind of complexing agent. Oxalic acid showed fast oxide formation with poor passivation performance, and this caused large tensile stress evolution over 250 MPa in the Cu film. The synergetic effect of stress evolution and temperature increase due to the friction during the polishing caused severe pitting of the Cu surface after polishing in oxalic-acidbased slurry.This work was supported by the Korea Science and Engineering Foundation through the Research Center for Energy Conversion and Storage, the Fundamental Research and Development Program for Core Technology of Materials funded by the Korean Ministry of Commerce, Industry, and Energy, and by the Institute of Chemical Processes at Seoul National University

    Spatial distribution and temporal trends of cyclic and linear siloxanes in sediment from semi-enclosed and industrialized bays of Korea, in 2013 and 2021

    Get PDF
    Although siloxanes are contaminants of emerging concerns, limited studies have been conducted on contamination and time trends in siloxanes from aquatic environments worldwide. To date, most previous studies have focused on the environmental relevance of cyclic siloxanes in coastal environments. In the present study, cyclic and linear siloxanes were measured in sediment collected from semi-enclosed bays in Korea in 2013 and 2021 to assess occurrence, spatial distribution, temporal trends, and ecological risks. Almost all siloxanes were detected in all sediment samples, indicating continuous contamination for the last decade. The concentrations of cyclic siloxanes in sediment were approximately two times higher than those of linear siloxanes. Decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) were predominantly detected in all sediment samples, possibly due to their high consumption and strong resistance. The overall concentrations of siloxanes in sediment gradually decreased from inner to outer parts of the bays, suggesting that industrial activities largely contributed to siloxane contamination. Moreover, the highest concentrations of siloxanes in both sampling years were observed in sediment near the outfall of wastewater treatment plant, implying a potential source in the coastal environment. Siloxane concentrations in sediment were significantly correlated with sedimentary organic carbon. The concentrations of siloxanes in sediment were not significantly different between 2013 and 2021, indicating ongoing contamination. The concentrations of D5 and D6 in our sediment samples showed a limited potential to pose a threat to benthic organisms
    corecore