20 research outputs found

    Mapping The Inland Sea: Naomi Wallace’s British Epic Drama

    No full text

    COVID-19, Indigenous peoples, local communities and natural resource governance

    No full text
    We report on how the COVID-19 pandemic is affecting Indigenous peoples and local communities (IPLCs), especially those who govern, manage and conserve their lands and waters. We explore the themes of access and use of natural resources, solidarity, decision-making, the role of governments and IPLCs in managing COVID-19, and the uptake of traditional medicine. These themes are explored through a global online survey in English, Spanish and French. We collected and analysed 133 surveys from 40 countries, using SenseMaker®, a software that enables analysis of micronarratives based on how respondents classify their own stories. We explore the themes further through case studies from Benin, Fiji, France, Gabon, Guyana, Guatemala, India and Madagascar, highlighting challenges and opportunities in how IPLCs responded to COVID-19. Our study underscores the importance of selfempowerment and recognition of IPLC rights, which allows them to use traditional medicines, meet subsistence requirements during lockdowns, help community members and neighbours to sustain livelihoods, and to govern, defend and conserve their territories. We propose key actions to support IPLCs navigate future pandemics while protecting their lands and waters

    MHC2TA mRNA levels and human herpesvirus 6 in multiple sclerosis patients treated with interferon beta along two-year follow-up

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In previous studies we found that MHC2TA +1614 genotype frequency was very different when MS patients with and without human herpesvirus 6 (HHV-6) in serum samples were compared; a different clinical behavior was also described. The purpose of the study was: 1. To evaluate if MHC2TA expression in MS patients was influenced by interferon beta (IFN-beta) treatment. 2. To study MHC2TA expression in MS patients with and without minor allele C. 3. To analyze the relation between MHC2TA mRNA levels and HHV-6 active infection in MS patients.</p> <p>Methods</p> <p>Blood and serum samples of 154 MS patients were collected in five programmed visits: basal (prior to beginning IFN-beta treatment), six, twelve, eighteen and twenty-four months later. HHV-6 in serum and MHC2TA mRNA levels were evaluated by PCR and RT-PCR, respectively. Neutralizing antibodies (NAbs) against IFN-beta were analyzed by the cytopathic effect assay.</p> <p>Results</p> <p>We found that MHC2TA mRNA levels were significantly lower among MS patients with HHV-6 active infection at the basal visit (without treatment) than in those MS patients without HHV-6 active infection at the basal visit (p = 0.012); in all the positive samples we only found variant A. Furthermore, 58/99 (58.6%) MS patients without HHV-6 along the five programmed visits and an increase of MHC2TA expression after two-years of IFN-beta treatment were clinical responders vs. 5/21 (23.8%) among those MS patients with HHV-6 and a decrease of MHC2TA mRNA levels along the two-years with IFN-beta treatment (p = 0.004); no differences were found between patients with and without NAbs.</p> <p>Conclusions</p> <p>MHC2TA mRNA levels could be decreased by the active replication of HHV-6; the absence of HHV-6 in serum and the increase of MHC2TA expression could be further studied as markers of good clinical response to IFN-beta treatment.</p

    Development of a Rapid Automated Influenza A, Influenza B, and Respiratory Syncytial Virus A/B Multiplex Real-Time RT-PCR Assay and Its Use during the 2009 H1N1 Swine-Origin Influenza Virus Epidemic in Milwaukee, Wisconsin

    No full text
    Rapid, semiautomated, and fully automated multiplex real-time RT-PCR assays were developed and validated for the detection of influenza (Flu) A, Flu B, and respiratory syncytial virus (RSV) from nasopharyngeal specimens. The assays can detect human H1N1, H3N2, and swine-origin (S-OIV) H1N1 Flu A viruses and were effectively used to distinguish Flu A infections (of all subtypes) from Flu B and RSV infections during the current S-OIV outbreak in Milwaukee, WI. The analytical limits of detection were 10−2 to 101 TCID50/ml depending on the platform and analyte and showed only one minor cross-reaction among 23 common respiratory pathogens (intermittent cross-reaction to adenovirus at >107 TCID50/ml). A total of 100 clinical samples were tested by tissue culture, both automated assays, and the US Food and Drug Administration-approved ProFlu+ assay. Both the semiautomated and fully automated assays exhibited greater overall (Flu A, Flu B, and RSV combined) clinical sensitivities (93 and 96%, respectively) and individual Flu A sensitivities (100%) than the Food and Drug Administration-approved test (89% overall sensitivity and 93% Flu A sensitivity). All assays were 99% specific. During the S-OIV outbreak in Milwaukee, WI, the fully automated assay was used to test 1232 samples in 2 weeks. Flu A was detected in 134 clinical samples (126 H1N1 S-OIV, 5 H1N1 [human], and 1 untyped) with 100% positive agreement compared with other “in-house” validated molecular assays, with only 2 false-positive results. Such accurate testing using automated high-throughput molecule systems should allow clinicians and public health officials to react quickly and effectively during viral outbreaks
    corecore