104 research outputs found
Numerical studies of the two- and three-dimensional gauge glass at low temperature
We present results from Monte Carlo simulations of the two- and
three-dimensional gauge glass at low temperature using the parallel tempering
Monte Carlo method. Our results in two dimensions strongly support the
transition being at T_c=0. A finite-size scaling analysis, which works well
only for the larger sizes and lower temperatures, gives the stiffness exponent
theta = -0.39 +/- 0.03. In three dimensions we find theta = 0.27 +/- 0.01,
compatible with recent results from domain wall renormalization group studies.Comment: 7 pages, 10 figures, submitted to PR
Zero Temperature Glass Transition in the Two-Dimensional Gauge Glass Model
We investigate dynamic scaling properties of the two-dimensional gauge glass
model for the vortex glass phase in superconductors with quenched disorder.
From extensive Monte Carlo simulations we obtain static and dynamic finite
size scaling behavior, where the static simulations use a temperature exchange
method to ensure convergence at low temperatures. Both static and dynamic
scaling of Monte Carlo data is consistent with a glass transition at zero
temperature. We study a dynamic correlation function for the superconducting
order parameter, as well as the phase slip resistance. From the scaling of
these two functions, we find evidence for two distinct diverging correlation
times at the zero temperature glass transition. The longer of these time scales
is associated with phase slip fluctuations across the system that lead to
finite resistance at any finite temperature, while the shorter time scale is
associated with local phase fluctuations.Comment: 8 pages, 10 figures; v2: some minor correction
A cross-institutional analysis of the effects of broadening trainee professional development on research productivity
PhD-trained scientists are essential contributors to the workforce in diverse employment sectors that include academia, industry, government, and nonprofit organizations. Hence, best practices for training the future biomedical workforce are of national concern. Complementing coursework and laboratory research training, many institutions now offer professional training that enables career exploration and develops a broad set of skills critical to various career paths. The National Institutes of Health (NIH) funded academic institutions to design innovative programming to enable this professional development through a mechanism known as Broadening Experiences in Scientific Training (BEST). Programming at the NIH BEST awardee institutions included career panels, skill-building workshops, job search workshops, site visits, and internships. Because doctoral training is lengthy and requires focused attention on dissertation research, an initial concern was that students participating in additional complementary training activities might exhibit an increased time to degree or diminished research productivity. Metrics were analyzed from 10 NIH BEST awardee institutions to address this concern, using time to degree and publication records as measures of efficiency and productivity. Comparing doctoral students who participated to those who did not, results revealed that across these diverse academic institutions, there were no differences in time to degree or manuscript output. Our findings support the policy that doctoral students should participate in career and professional development opportunities that are intended to prepare them for a variety of diverse and important careers in the workforce
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Rare genetic variants explain missing heritability in smoking
Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this ‘missing heritability’. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability (hSNP2) was estimated from 0.13 to 0.28 (s.e., 0.10–0.13) in European ancestries, with 35–74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5–4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability (hped2, 0.18–0.34). In the African ancestry samples, hSNP2 was estimated from 0.03 to 0.33 (s.e., 0.09–0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking
Intense Pulsed Plasma X-ray Sources for Lithography: Mask Damage Effects
A characteristic of pulsed plasma sources is that each intense x‐ray pulse is of very short time duration, typically ∼1–100 ns. Thermal energy is thus deposited almost instantaneously into the x‐ray mask elements, and since the heat cannot be dissipated in such a short time, the potential exists for damaging the mask. A theoretical analysis has been carried out to examine such mask damage effects and their role in constraining key system parameters (e.g., throughput, resolution). It is shown that the timescale for interpulse cooling by heat conduction in a helium environment is adequate for source repetition rates up to a few hundred pulses per second. Thermal stress‐induced mask failure mechanisms are discussed. Finally, it is concluded that plasma x‐ray sources capable of being repetitively pulsed at rates \u3e1 Hz appear to be promising candidates for high‐resolution, high‐throughput lithography
Employee participation in manufacturing industry Themes and implications
SIGLELD:6224.121(8112) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Employee participation in manufacturing industry Management attitudes
SIGLELD:6224.121(8110) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
- …