48 research outputs found
Believe it or not: A network analysis investigating how individuals embrace false and true statements during COVID-19
As individuals make belief decisions on truths and falsehoods, a systematic organization of (mis)information emerges. In this study, we employ a network approach to illustrate how a sample of Americans share a cognitive network of false and true statements related to COVID-19. Moreover, we examine what factors are associated with the formation of misbeliefs. Findings from our US-based rolling cross-sectional survey data indicate that conservative groups exhibit a greater tendency to mix up false and true information than liberal groups. This tendency is preserved across different time points, revealing more homogenously structured information networks of conservative groups compared to liberal groups. The benefits of a cognitive network framework that integrates structural perspectives into theories are discussed
Immune-engineered H7N9 Influenza Hemagglutinin Improves Protection against Viral Influenza Virus Challenge
The influenza hemagglutinin (HA) isolated from avian H7N9 influenza virus strains elicit weak immune responses. This low immunogenicity may be due to a regulatory T cell (Treg)–stimulating epitopes in HA from the H7N9 isolate A/Anhui/1/2013 (Anh/13). In this report, this Treg stimulating sequence was removed from the wild-type (WT) H7 HA amino acid sequence and replaced with a conserved CD4 + T cell stimulating sequences from human seasonal H3N2 strains and designed OPT1 H7 HA. The effectiveness of this optimized H7 HA protein was determined using a humanized mouse (HLA-DR3) expressing the human leukocyte antigen (HLA) DR3 allele. HLA-DR3 mice were pre-immunized by infecting with H3N2 influenza virus, A/Hong Kong/4108/2014 and then vaccinated intramuscularly with either the WT H7 HA from Anh/13 or the OPT1 H7 HA antigen without adjuvant. The OPT1 H7 HA vaccination group elicited higher H7 HA-specific IgG titers that resulted in a lower mortality, weight loss, and lung viral titer following lethal challenge with the H7N9 Anh/13 influenza virus compared to WT-vaccinated mice. Overall, T-cell epitope-engineered vaccines can improve the immunogenicity of H7 HA antigens resulting in enhanced survival and lower morbidity against H7N9 influenza virus challenge
T cell epitope engineering: an avian H7N9 influenza vaccine strategy for pandemic preparedness and response
The delayed availability of vaccine during the 2009 H1N1 influenza pandemic created a sense of urgency to better prepare for the next influenza pandemic. Advancements in manufacturing technology, speed and capacity have been achieved but vaccine effectiveness remains a significant challenge. Here, we describe a novel vaccine design strategy called immune engineering in the context of H7N9 influenza vaccine development. The approach combines immunoinformatic and structure modeling methods to promote protective antibody responses against H7N9 hemagglutinin (HA) by engineering whole antigens to carry seasonal influenza HA memory CD4(+) T cell epitopes - without perturbing native antigen structure - by galvanizing HA-specific memory helper T cells that support sustained antibody development against the native target HA. The premise for this vaccine concept rests on (i) the significance of CD4(+) T cell memory to influenza immunity, (ii) the essential role CD4(+) T cells play in development of neutralizing antibodies, (iii) linked specificity of HA-derived CD4(+) T cell epitopes to antibody responses, (iv) the structural plasticity of HA and (v) an illustration of improved antibody response to a prototype engineered recombinant H7-HA vaccine. Immune engineering can be applied to development of vaccines against pandemic concerns, including avian influenza, as well as other difficult targets
Influenza virus immune imprinting dictates the clinical outcomes in ferrets challenged with highly pathogenic avian influenza virus H5N1
Zoonotic transmission of H5N1 highly pathogenic avian influenza virus (HPAIV) into the human population is an increasing global threat. The recent 2022 HPAIV outbreak significantly highlighted this possibility, increasing concern in the general population. The clinical outcomes of H5N1 influenza virus exposure can be determined by an individual’s primary influenza virus infection (imprinting) or vaccination status. Immunological imprinting with Group 1 - (H1N1, H2N2, and H2N3) increases survival rates following H5N1 viral infection compared to Group 2 - (H3N2) imprinted individuals. Vaccination against H5N1 influenza viruses can offer protection to at-risk populations; however, stockpiled inactivated H5N1 influenza vaccines are not readily available to the public. We hypothesize that the immunological response to vaccination and subsequent clinical outcome following H5N1 influenza virus infection is correlated with the immunological imprinting status of an individual. To test this hypothesis, our lab established a ferret pre-immune model of disease. Naïve ferrets were intranasally inoculated with seasonal influenza viruses and allowed to recover for 84 days prior to H5N1 virus infection. Ferrets imprinted following H1N1 and H2N3 virus infections were completely protected against lethal H5N1 influenza virus challenge (100% survival), with few to no clinical symptoms. In comparison, H3N2 influenza virus-imprinted ferrets had severe clinical symptoms, delayed disease progression, and a sublethal phenotype (40% mortality). Consecutive infections with H1N1 influenza viruses followed by an H3N2 influenza virus infection did not abrogate the immune protection induced by the original H1N1 influenza virus infection. In addition, ferrets consecutively infected with H1N1 and H2N3 viruses had no clinical symptoms or weight loss. H3N2 pre-immune ferrets were vaccinated with a broadly reactive H5 HA-based or H1 NA-based vaccine (Hu-CO 2). These ferrets were protected against H5N1 influenza virus challenge, whereas ferrets vaccinated with the H1N1 wild-type CA/09 rHA vaccine had similar phenotypes as non-vaccinated H3N2-imprinted ferrets with 40% survival. Overall, Group 2 imprinted ferrets, which were vaccinated with heterologous Group 1 HA vaccines, had redirected immune responses to Group 1 influenza viral antigens and rescued a sublethal phenotype to complete protection
Hemagglutination Inhibition (HAI) antibody landscapes after vaccination with H7Nx virus like particles.
BackgroundA systemic evaluation of the antigenic differences of the H7 influenza hemagglutinin (HA) proteins, especially for the viruses isolated after 2016, are limited. The purpose of this study was to investigate the antigenic differences of major H7 strains with an ultimate aim to discover H7 HA proteins that can elicit protective receptor-binding antibodies against co-circulating H7 influenza strains.MethodA panel of eight H7 influenza strains were selected from 3,633 H7 HA amino acid sequences identified over the past two decades (2000-2018). The sequences were expressed on the surface of virus like particles (VLPs) and used to vaccinate C57BL/6 mice. Serum samples were collected and tested for hemagglutination-inhibition (HAI) activity. The vaccinated mice were challenged with lethal dose of H7N9 virus, A/Anhui/1/2013.ResultsVLPs expressing the H7 HA antigens elicited broadly reactive antibodies each of the selected H7 HAs, except the A/Turkey/Italy/589/2000 (Italy/00) H7 HA. A putative glycosylation due to an A169T substitution in antigenic site B was identified as a unique antigenic profile of Italy/00. Introduction of the putative glycosylation site (H7 HA-A169T) significantly altered the antigenic profile of HA of the A/Anhui/1/2013 (H7N9) strain.ConclusionThis study identified key amino acid mutations that result in severe vaccine mismatches for future H7 epidemics. Future universal influenza vaccine candidates will need to focus on viral variants with these key mutations
Influence of the H1N1 influenza pandemic on the humoral immune response to seasonal flu vaccines.
In this study, we hypothesized that the humoral response to trivalent seasonal influenza virus vaccines was influenced by rapid antigenic switching of H1 HA. We tested archived sera and peripheral blood mononuclear cells (PBMC) collected at prior to vaccination at day 0, as well as days 30 and 90 after vaccination during the 2009/2010 and 2010/2011 influenza virus seasons. During the 2009/2010 season, vaccination successfully induced antibodies with hemagglutinin inhibition (HAI) activity against both H1N1 and H3N2 vaccine components. For the 2010/2011 season, the A/California/04/2009 (CA/09) H1N1 elicited seroconversion (HAI titer = 1:40) and novel memory B cell (Bmem) responses from most individuals. However, the H3N2 influenza virus component of the vaccine, A/Perth/16/2009 (Perth/09), back-boosted and elicited antibodies with HAI activity and Bmem response to historical H3N2 influenza virus strains. Following stratification of the pre-existing antibody with HAI against the CA/09 H1N1, there was a negative correlation with HAI seroconversion to other vaccine strains. Overall, strong immune responses against CA/09 H1N1 influenza virus negatively influenced the induction of novel humoral responses
Association between Interferon Response and Protective Efficacy of NS1-Truncated Mutants as Influenza Vaccine Candidates in Chickens.
Influenza virus mutants that encode C-terminally truncated NS1 proteins (NS1-truncated mutants) are attractive candidates for avian live attenuated influenza vaccine (LAIV) development because they are both attenuated and immunogenic in chickens. We previously showed that a high protective efficacy of NS1-truncated LAIV in chickens corresponds with induction of high levels of type I interferon (IFN) responses in chicken embryonic fibroblast cells. In this study, we investigated the relationship between induction of IFN and IFN-stimulated gene responses in vivo and the immunogenicity and protective efficacy of NS1-truncated LAIV. Our data demonstrates that accelerated antibody induction and protective efficacy of NS1-truncated LAIV correlates well with upregulation of IFN-stimulated genes. Further, through oral administration of recombinant chicken IFN alpha in drinking water, we provide direct evidence that type I IFN can promote rapid induction of adaptive immune responses and protective efficacy of influenza vaccine in chickens