295 research outputs found

    Forage Rye Cultivars for Animal Feed in Korea

    Get PDF
    Rye (Secale cereal L.) is well known for its overwintering ability and has the highest tolerance to cold temperature of the small grain cereals such as wheat, barley, and oat. Rye is used as livestock pasture and as green manure in Korea, and its cultivation area for fodder is about 50,000 ha in 2014. Most rye is grown as a fall-sown annual crop, generally called “winter rye”. In Korea, rye cultivation for whole crop silage (WCS) in the winter-season rice field can be considered as a promising way to enhance feed supply. The WCS production can be an efficient way to use farm products as livestock feed, and it can also contribute to increasing farm income. Although rye is inferior in several ways to the predominant cereal crops (wheat, rice, and maize), it will continue to be an important crop for farmers in Korea because of its winter hardiness and early harvesting by rapid growing ability

    Torsional Vibration Transduction in a Solid Shaft by MPTs

    Get PDF
    In this study, we aim to investigate the feasibility to use MPTs (Magnetostrictive Patch Transducers) for torsional vibration measurement in solid ferromagnetic cylinders. MPTs consisting of thin magnetostrictive patches, permanent magnets and a solenoid coil have been widely used for elastic wave transduction in the ultrasound frequency range [1] but they have been seldom used for sonic-frequency range vibration measurement, in spite of their unique wireless transduction characteristics. While a MPT was used in Ref. [2] to perform torsional modal testing in a hollow cylinder or a pipe having relatively small torsional rigidity, no investigation has been reported yet on the use of MPTs in “solid” “ferromagnetic” shafts, common torsional power carrying elements in machines.While we will be mainly focused here on the torsional wave measurement in stationary shafts, the MPT-based torsional measurement can be also applied to rotating shafts. Because the torsional rigidities of solid shafts are much larger than those of hollow cylinders of the same radii, it is important to find optimal MPT configurations, such as the optimal number of rectangular patches to be installed around the surface of a solid shaft. Thereby, we performed numerical investigations and accordingly designed a series of experiments for torsional vibration testing in steel shafts. The actual modal testing experiments with the designed MPTs were found to predict the torsional Eigen-frequencies and Eigen-modes that agree well with the theoretical predictions. Also the relation between the measured vibration signals from MPTs and those from strain gages was checked experimentally and in fact, the experimental result favorably agreed with the theoretical prediction. Potential applications of the MPT-based torsional vibration measurement technique in rotating solid shafts for structural health monitoring are also briefly discussed

    Forward-looking ultrasound wearable scanner system for estimation of urinary bladder volume

    Get PDF
    Accurate measurement of bladder volume is an important tool for evaluating bladder function. In this study, we propose a wearable bladder scanner system that can continuously measure bladder volume in daily life for urinary patients who need urodynamic studies. The system consisted of a 2-D array, which included integrated forward-looking piezoelectric transducers with thin substrates. This study aims to estimate the volume of the bladder using a small number of piezoelectric transducers. A least-squares method was implemented to optimize an ellipsoid in a quadratic surface equation for bladder volume estimation. Ex-vivo experiments of a pig bladder were conducted to validate the proposed system. This work presents the potential of the approach for wearable bladder monitoring, which has similar measurement accuracy compared to the commercial bladder imaging system. The wearable bladder scanner can be improved further as electronic voiding diaries by adding a few more features to the current function. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.1

    Small and Medium Amplitude Oscillatory Shear Rheology of Model Branched Polystyrene (PS) Melts

    Get PDF
    Linear and nonlinear rheological properties of model comb polystyrenes (PS) with loosely to densely grafted architectures were measured under small and medium amplitude oscillatory shear (SAOS and MAOS) flow. This comb PS set had the same length of backbone and branches but varied in the number of branches from 3 to 120 branches. Linear viscoelastic properties of the comb PS were compared with the hierarchical model predictions. The model underpredicted zero-shear viscosity and backbone plateau modulus of densely branched comb with 60 or 120 branches because the model does not include the effect of side chain crowding. First- and third-harmonic nonlinearities reflected the hierarchy in the relaxation motion of comb structures. Notably, the low-frequency plateau values of first-harmonic MAOS moduli scaled with M2^{-2}w_{w} (total molecular weight), reflecting dynamic tube dilution (DTD) by relaxed branches. Relative intrinsic nonlinearity Q0_{0} exhibited the difference between comb and bottlebrush via no low-frequency Q0_{0} peak of bottlebrush corresponding to backbone relaxation, which is probably related to the stretched backbone conformation in bottlebrush

    Effects of Lowering Dialysate Calcium Concentrations on Arterial Stiffness in Patients Undergoing Hemodialysis

    Get PDF
    BACKGROUND/AIMS: We assessed changes in hemodynamic and arterial stiffness parameters following reductions of dialysate calcium concentrations in patients undergoing hemodialysis. METHODS: In this prospective study, 20 patients on maintenance hemodialysis (10 females, 10 males) with dialysate calcium concentrations of 1.75 mmol/L were enrolled. At the start of the study, the dialysate calcium level was lowered to 1.50 mmol/L. Serial changes in biochemical, hemodynamic, and arterial stiffness parameters, including pulse wave velocity (PWV) and augmentation index (AIx), were assessed every 2 months for 6 months. We also examined changes in the calcification-inhibitory protein, serum fetuin-A. RESULTS: During the 6-month study period, serum total calcium and ionized calcium decreased consistently (9.5 ± 1.0 to 9.0 ± 0.7, p = 0.002 vs. 1.3 ± 0.1 to 1.1 ± 0.1, p = 0.035). Although no apparent changes in blood pressure were observed, heart-femoral PWW (hf-PWV) and AIx showed significant improvement (p = 0.012, 0.043, respectively). Repeated-measures ANOVA indicated a significant effect of lowering dialysate calcium on hf-PWV (F = 4.58, p = 0.004) and AIx (F = 2.55, p = 0.049). Accompanying the change in serum calcium, serum fetuin-A levels significantly increased (95.8 ± 45.8 pmol/mL at baseline to 124.9 ± 82.2 pmol/mL at 6 months, p = 0.043). CONCLUSIONS: Lowering dialysate calcium concentration significantly improved arterial stiffness parameters, which may have been associated with upregulation of serum fetuin-A.ope

    Electrochemical velocimetry on centrifugal microfluidic platforms

    Get PDF
    Expanding upon recent applications of interfacing electricity with centrifugal microfluidic platforms, we introduce electrochemical velocimetry to monitor flow in real-time on rotating fluidic devices. Monitoring flow by electrochemical techniques requires a simple, compact setup of miniaturized electrodes that are embedded within a microfluidic channel and are connected to a peripherally-located potentiostat. On-disc flow rates, determined by electrochemical velocimetry, agreed well with theoretically expected values and with optical measurements. As an application of the presented techniques, the dynamic process of droplet formation and release was recorded, yielding critical information about droplet frequency and volume. Overall, the techniques presented in this work advance the field of centrifugal microfluidics by offering a powerful tool, previously unavailable, to monitor flow in real-time on rotating microfluidic systems.close4

    Simultaneous determination of 13 mycotoxins in feedstuffs using QuEChERS extraction

    Get PDF
    Mycotoxins are secondary metabolites produced by various fungi and are known to have a significant negative impact on human and animal health. When feedstuffs are contaminated with mycotoxins, their toxicities may be caused a variety of diseases. In this study, the residual mycotoxins in feedstuffs were analyzed using LC-MS/MS incorporated with QuEChERS extraction. Analytical method validation was performed for LOD, LOQ, linearity, and recoveries with consideration of matrix effects prior to the residual analysis. They were all reached to the accepted range of validation level. Using 39 feedstuff samples (5 g) for mycotoxin analysis, nine samples were contaminated by four major mycotoxins such as fumonisin B1 (FB1), deoxynivalenol, fumonisin B2, and zearalenone. Among them, FB1 was detected at the highest concentration as 18.0943 mg/kg. The total sum of fumonisins in 39 samples did not exceed the maximum residual level (MRL) criterion set by Korean Food and Drug Administration. Altogether, intensive management of mycotoxins in Korean feedstuffs should be implemented with proper and routine monitoring, even their residual concentrations are not exceeded over the MRL levels because of high frequent detection found in this study

    Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries

    Get PDF
    Solid electrolyte interphases generated using electrolyte additives are key for anode-electrolyte interactions and for enhancing the lithium-ion battery lifespan. Classical solid electrolyte interphase additives, such as vinylene carbonate and fluoroethylene carbonate, have limited potential for simultaneously achieving a long lifespan and fast chargeability in high-energy-density lithium-ion batteries (LIBs). Here we report a next-generation synthetic additive approach that allows to form a highly stable electrode-electrolyte interface architecture from fluorinated and silylated electrolyte additives; it endures the lithiation-induced volume expansion of Si-embedded anodes and provides ion channels for facile Li-ion transport while protecting the Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes. The retrosynthetically designed solid electrolyte interphase-forming additives, 5-methyl-4-((trifluoromethoxy)methyl)-1,3-dioxol-2-one and 5-methyl-4-((trimethylsilyloxy)methyl)-1,3-dioxol-2-one, provide spatial flexibility to the vinylene carbonate-derived solid electrolyte interphase via polymeric propagation with the vinyl group of vinylene carbonate. The interface architecture from the synthesized vinylene carbonate-type additive enables high-energy-density LIBs with 81.5% capacity retention after 400 cycles at 1???C and fast charging capability (1.9% capacity fading after 100 cycles at 3???C)
    corecore