951 research outputs found

    String-derived D4 flavor symmetry and phenomenological implications

    Get PDF
    In this paper we show how some flavor symmetries may be derived from the heterotic string, when compactified on a 6D orbifold. In the body of the paper we focus on the D4D_4 family symmetry, recently obtained in Z3×Z2Z_3 \times Z_2 orbifold constructions. We show how this flavor symmetry constrains fermion masses, as well as the soft SUSY breaking mass terms. Flavor symmetry breaking can generate the hierarchy of fermion masses and at the same time the flavor symmetry suppresses large flavor changing neutral current processes.Comment: 17 pages, no figur

    CP asymmetries in penguin-induced B decays in general left-right models

    Full text link
    We study CP asymmetries in penguin-induced b -> s\bar{s}s decays in general left-right models without imposing manifest or pseudomanifest left-right symmetry. Using the effective Hamiltonian approach, we evaluate CP asymmetries in B^\pm -> \phi K^{(\ast)\pm} decays as well as mixing induced B meson decays B -> J/\psi K_s and B -> \phi K_s decays. Based on recent measurements revealing large CP violation, we show that nonmanifest type model is more favored than manifest or pseudomanifest type.Comment: 16 pages, 12 eps figure

    Finite Hilbert stability of (bi)canonical curves

    Full text link
    We prove that a generic canonically or bicanonically embedded smooth curve has semistable m-th Hilbert points for all m. We also prove that a generic bicanonically embedded smooth curve has stable m-th Hilbert points for all m \geq 3. In the canonical case, this is accomplished by proving finite Hilbert semistability of special singular curves with G_m-action, namely the canonically embedded balanced ribbon and the canonically embedded balanced double A_{2k+1}-curve. In the bicanonical case, we prove finite Hilbert stability of special hyperelliptic curves, namely Wiman curves. Finally, we give examples of canonically embedded smooth curves whose m-th Hilbert points are non-semistable for low values of m, but become semistable past a definite threshold. (This paper subsumes the previous submission and arXiv:1110.5960).Comment: To appear in Inventiones Mathematicae, 2012. The final publication is available at http://www.springerlink.co

    Theory of biopolymer stretching at high forces

    Full text link
    We provide a unified theory for the high force elasticity of biopolymers solely in terms of the persistence length, ξp\xi_p, and the monomer spacing, aa. When the force f>\fh \sim k_BT\xi_p/a^2 the biopolymers behave as Freely Jointed Chains (FJCs) while in the range \fl \sim k_BT/\xi_p < f < \fh the Worm-like Chain (WLC) is a better model. We show that ξp\xi_p can be estimated from the force extension curve (FEC) at the extension x1/2x\approx 1/2 (normalized by the contour length of the biopolymer). After validating the theory using simulations, we provide a quantitative analysis of the FECs for a diverse set of biopolymers (dsDNA, ssRNA, ssDNA, polysaccharides, and unstructured PEVK domain of titin) for x1/2x \ge 1/2. The success of a specific polymer model (FJC or WLC) to describe the FEC of a given biopolymer is naturally explained by the theory. Only by probing the response of biopolymers over a wide range of forces can the ff-dependent elasticity be fully described.Comment: 20 pages, 4 figure

    Size Dependence of Metal-Insulator Transition in Stoichiometric Fe3O4 Nanocrystals

    Full text link
    Magnetite (Fe3O4) is one of the most actively studied materials with a famous metal-insulator transition (MIT), so-called the Verwey transition at around 123 K. Despite the recent progress in synthesis and characterization of Fe3O4 nanocrystals (NCs), it is still an open question how the Verwey transition changes on a nanometer scale. We herein report the systematic studies on size dependence of the Verwey transition of stoichiometric Fe3O4 NCs. We have successfully synthesized stoichiometric and uniform-sized Fe3O4 NCs with sizes ranging from 5 to 100 nm. These stoichiometric Fe3O4 NCs show the Verwey transition when they are characterized by conductance, magnetization, cryo-XRD, and heat capacity measurements. The Verwey transition is weakly size-dependent and becomes suppressed in NCs smaller than 20 nm before disappearing completely for less than 6 nm, which is a clear, yet highly interesting indication of a size effect of this well-known phenomena. Our current work will shed new light on this ages-old problem of Verwey transition.Comment: 18 pages, 4 figures, Nano Letters (accepted

    B --> Phi K_S and Supersymmetry

    Full text link
    The rare decay B --> Phi K_S is a well-known probe of physics beyond the Standard Model because it arises only through loop effects yet has the same time-dependent CP asymmetry as B --> Psi K_S. Motivated by recent data suggesting new physics in B --> Phi K_S, we look to supersymmetry for possible explanations, including contributions mediated by gluino loops and by Higgs bosons. Chirality-preserving LL and RR gluino contributions are generically small, unless gluinos and squarks masses are close to the current lower bounds. Higgs contributions are also too small to explain a large asymmetry if we impose the current upper limit on B(B_s --> mu mu). On the other hand, chirality-flipping LR and RL gluino contributions can provide sizable effects and while remaining consistent with related results in B --> Psi K_S, Delta M_s, B --> X_s gamma and other processes. We discuss how the LR and RL insertions can be distinguished using other observables, and we provide a string-based model and other estimates to show that the needed sizes of mass insertions are reasonable.Comment: 33 pages, 32 figures, Updated version for PRD. Includes discussions of other recent works on this topic. Added discussions & plots for gluino mass dependence and effects of theoretical uncertaintie

    Role of quantum coherence in chromophoric energy transport

    Get PDF
    The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency. We develop two complementary approaches, based on a Green's function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.Comment: 5 pages, 3 figures, included static disorder, correlated environmen

    On the Origin of Peak-dip-hump Structure in the In-plane Optical Conductivity of the High TCT_C Cuprates; Role of Antiferromagnetic Spin Fluctuations of Short Range Order

    Full text link
    An improved U(1) slave-boson approach is applied to study the optical conductivity of the two dimensional systems of antiferromagnetically correlated electrons over a wide range of hole doping and temperature. Interplay between the spin and charge degrees of freedom is discussed to explain the origin of the peak-dip-hump structure in the in-plane conductivity of high TCT_C cuprates. The role of spin fluctuations of short range order(spin singlet pair) is investigated. It is shown that the spin fluctuations of the short range order can cause the mid-infrared hump, by exhibiting a linear increase of the hump frequency with the antiferromagnetic Heisenberg coupling strength
    corecore