195 research outputs found

    Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In contrast to tumor-suppressive apoptosis and autophagic cell death, necrosis promotes tumor progression by releasing the pro-inflammatory and tumor-promoting cytokine high mobility group box 1 (HMGB1), and its presence in tumor patients is associated with poor prognosis. Thus, necrosis has important clinical implications in tumor development; however, its molecular mechanism remains poorly understood.</p> <p>Results</p> <p>In the present study, we show that Distal-less 2 (Dlx-2), a homeobox gene of the Dlx family that is involved in embryonic development, is induced in cancer cell lines dependently of reactive oxygen species (ROS) in response to glucose deprivation (GD), one of the metabolic stresses occurring in solid tumors. Increased Dlx-2 expression was also detected in the inner regions, which experience metabolic stress, of human tumors and of a multicellular tumor spheroid, an <it>in vitro </it>model of solid tumors. Dlx-2 short hairpin RNA (shRNA) inhibited metabolic stress-induced increase in propidium iodide-positive cell population and HMGB1 and lactate dehydrogenase (LDH) release, indicating the important role(s) of Dlx-2 in metabolic stress-induced necrosis. Dlx-2 shRNA appeared to exert its anti-necrotic effects by preventing metabolic stress-induced increases in mitochondrial ROS, which are responsible for triggering necrosis.</p> <p>Conclusions</p> <p>These results suggest that Dlx-2 may be involved in tumor progression via the regulation of metabolic stress-induced necrosis.</p

    Development of Monoclonal Antibodies Against Human IRF-5 and Their Use in Identifying the Binding of IRF-5 to Nuclear Import Proteins Karyopherin-α1 and -β1

    Get PDF
    PURPOSE: IRF-5 is a direct transducer of virus-mediated and TLR-mediated signaling pathways for the expression of cytokines and chemokines which form homodimers or heterodimers with IRF-7. However, direct IRF-5-specific monoclonal antibodies (mAbs) are not available at present. These could be used to further evaluate the functions of IRF-5. In this study, we produced and characterized three mouse mAbs to human IRF-5. The binding of IRF-5 to nuclear import proteins was first identified using a mAb. MATERIALS AND METHODS: His-tagged human IRF-5 protein spanning amino acid residues 193-257 was used as an antigen and three mAbs were produced. The mAbs were tested with ELISA, Western blot analysis (WB), immunofluorescent staining (IF), and immunoprecipitation (IP). In addition, the nuclear import protein which carried phosphorylated IRF-5 was identified using one of these mAbs. RESULTS: MAbs 5IRF8, 5IRF10 and 5IRF24 which reacted with the recombinant His-IRF-5(193-257) protein were produced. All mAbs bound to human IRF-5, but not to IRF-3 or IRF-7. They could be used for WB, IF, and IP studies. The binding of phosphorylated IRF-5 to karyopherin-alpha1 and -beta1 was also identified. CONCLUSION: Human IRF-5-specific mAbs are produced for studying the immunologic roles related to IRF-5. Phosphorylated IRF-5 is transported to the nucleus by binding to nuclear import proteins karyopherin-alpha1 and -beta1.ope

    Pneumopericardium as a Complication of Pericardiocentesis

    Get PDF
    Pneumopericardium is a rare complication of pericardiocentesis, occurring either as a result of direct pleuro-pericardial communication or a leaky drainage system. Air-fluid level surrounding the heart shadow within the pericardium on a chest X-ray is an early observation at diagnosis. This clinical measurement and process is variable, depending on the hemodynamic status of the patient. The development of a cardiac tamponade is a serious complication, necessitating prompt recognition and treatment. We recently observed a case of pneumopericardium after a therapeutic pericardiocentesis in a 20-year-old man with tuberculous pericardial effusion

    The Relationship between Life Style, Menstrual Attitude and Premenstrual Syndrome in Nursing Students

    Get PDF
    PURPOSE: The purpose of this study was to identify the relationships between life style, menstrual attitude and premenstrual syndrome in nursing students. METHODS: The study participants were 246 nursing students of a university in Gyeunggi province. Data were collected by a self-administered questionnaire from May to June, 2012. Collected data were analyzed using the SPSS/WIN 20.0 program with descriptive statistics, Pearson correlation coefficient, t-test, one-way ANOVA and Scheffe test. RESULTS: Students who had undesirable alcohol habits (r=.15, p=.020) and negative menstrual attitude (r=.17, p=.009) experienced more a severe premenstrual syndrome (PMS). Students with dysmenorrhea had more severe PMS (F=12.41, p&amp;lt;.001) and a negative menstrual attitude (F=6.18, p&amp;lt;.001). CONCLUSION: These finding suggest that PMS would be alleviated by nursing interventions to improve alcohol habits and decrease negative menstrual attitudes, and nursing interventions for dysmenorrhea would be helpful in PMS management in nursing students. Further studies on the development of nursing interventions related to these factors are needed for PMS management

    Regulation of Tumor Progression by Programmed Necrosis

    Get PDF
    Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness

    Clinical characteristics of myelin oligodendrocyte glycoprotein antibody-associated disease according to their epitopes

    Get PDF
    BackgroundThe detection of myelin oligodendrocyte glycoprotein autoantibodies (MOG-Ab) is essential for the diagnosis of MOG-Ab-associated disease (MOGAD). The clinical implications of different epitopes recognized by MOG-Ab are largely unknown. In this study, we established an in-house cell-based immunoassay for detecting MOG-Ab epitopes and examined the clinical characteristics of patients with MOG-Ab according to their epitopes.MethodsWe conducted a retrospective review of patients with MOG-Ab-associated disease (MOGAD) in our single center registry, and collected serum samples from enrolled patients. Human MOG variants were generated to detect epitopes recognized by MOG-Ab. The differences in clinical characteristics according to the presence of reactivity to MOG Proline42 (P42) were evaluated.ResultsFifty five patients with MOGAD were enrolled. Optic neuritis was the most common presenting syndrome. The P42 position of MOG was a major epitope of MOG-Ab. The patients with a monophasic clinical course and childhood-onset patients were only observed in the group that showed reactivity to the P42 epitope.ConclusionWe developed an in-house cell-based immunoassay to analyze the epitopes of MOG-Ab. The P42 position of MOG is the primary target of MOG-Ab in Korean patients with MOGAD. Further studies are needed to determine the predictive value of MOG-Ab and its epitopes

    Hypointense Hepatic Lesions Depicted on Gadobenate Dimeglumine-Enhanced Three-Hour Delayed Hepatobiliary-Phase MR Imaging: Differentiation between Benignancy and Malignancy

    Get PDF
    Gadobenate dimeglumine-enhanced magnetic resonance (MR) imaging simultaneously provides both morphological and functional information by the acquisition of dynamic and hepatobiliary-phase imaging. Focal lesions with no functioning hepatocytes, where hepatobiliary metabolism is blocked or inhibited, are generally unable to uptake and excrete gadobenate dimeglumine into the bile. Such lesions are typically malignant and usually appear hypointense as compared to the normal liver parenchyma as seen on hepatobiliary-phase imaging. However, various benign hepatic lesions may also be hypointense due to (a) the presence of no functioning hepatocytes, (b) damage to the functioning hepatocytes or (c) impairment of biliary function as depicted on hepatobiliary-phase imaging. All of these imaging features may result in recognition of the benign hepatic lesions as hepatic malignancies. As depicted on three-hour delayed hepatobiliary-phase imaging, peripheral iso/hyperintensity due to fibrotic tissue compared to the hypointense center with a fuzzy margin may be a clue for the presence of a benign hepatic lesion. In contrast, peripheral hypointensity due to rich tumoral cellularity compared to the center with a clear margin may favor an indication of the presence of a malignant hepatic lesion

    Targeting metastatic breast cancer with peptide epitopes derived from autocatalytic loop of Prss14/ST14 membrane serine protease and with monoclonal antibodies

    Get PDF
    Background In order to develop a new immunotherapeutic agent targeting metastatic breast cancers, we chose to utilize autocatalytic feature of the membrane serine protease Prss14/ST14, a specific prognosis marker for ER negative breast cancer as a target molecule. Methods The study was conducted using three mouse breast cancer models, 4 T1 and E0771 mouse breast cancer cells into their syngeneic hosts, and an MMTV-PyMT transgenic mouse strain was used. Prss14/ST14 knockdown cells were used to test function in tumor growth and metastasis, peptides derived from the autocatalytic loop for activation were tested as preventive metastasis vaccine, and monoclonal and humanized antibodies to the same epitope were tested as new therapeutic candidates. ELISA, immunoprecipitation, Immunofluorescent staining, and flow cytometry were used to examine antigen binding. The functions of antibodies were tested in vitro for cell migration and in vivo for tumor growth and metastasis. Results Prss14/ST14 is critically involved in the metastasis of breast cancer and poor survival rather than primary tumor growth in two mouse models. The epitopes derived from the specific autocatalytic loop region of Prss14/ST14, based on structural modeling acted as efficient preventive metastasis vaccines in mice. A new specific monoclonal antibody mAb3F3 generated against the engineered loop structure could reduce cell migration, eliminate metastasis in PyMT mice, and can detect the Prss14/ST14 protein expressed in various human cancer cells. Humanized antibody huAb3F3 maintained the specificity and reduced the migration of human breast cancer cells in vitro. Conclusion Our study demonstrates that Prss14/ST14 is an important target for modulating metastasis. Our newly developed hybridoma mAbs and humanized antibody can be further developed as new promising candidates for the use in diagnosis and in immunotherapy of human metastatic breast cancer.This work is supported in part by the National Research Foundation (NRF) grant funded by the Korea government (MEST) (No. 2013R1A1A2009892 and No. 2017R1A2B4008109) and Inha Univeristy Research Grant awarded to MGK and (No. 2015R1A2A1A15054021) to SHK
    corecore