199 research outputs found

    Role of Cyclin B1/Cdc2 Up-Regulation in the Development of Mitotic Prometaphase Arrest in Human Breast Cancer Cells Treated with Nocodazole

    Get PDF
    Background: During a normal cell cycle, the transition from G 2 phase to mitotic phase is triggered by the activation of the cyclin B1-dependent Cdc2 kinase. Here we report our finding that treatment of MCF-7 human breast cancer cells with nocodazole, a prototypic microtubule inhibitor, results in strong up-regulation of cyclin B1 and Cdc2 levels, and their increases are required for the development of mitotic prometaphase arrest and characteristic phenotypes. Methodology/Principal Findings: It was observed that there was a time-dependent early increase in cyclin B1 and Cdc2 protein levels (peaking between 12 and 24 h post treatment), and their levels started to decline after the initial increase. This early up-regulation of cyclin B1 and Cdc2 closely matched in timing the nocodazole-induced mitotic prometaphase arrest. Selective knockdown of cyclin B1or Cdc2 each abrogated nocodazole-induced accumulation of prometaphase cells. The nocodazole-induced prometaphase arrest was also abrogated by pre-treatment of cells with roscovitine, an inhibitor of cyclin-dependent kinases, or with cycloheximide, a protein synthesis inhibitor that was found to suppress cyclin B1 and Cdc2 up-regulation. In addition, we found that MAD2 knockdown abrogated nocodazole-induced accumulation of cyclin B1 and Cdc2 proteins, which was accompanied by an attenuation of nocodazole-induced prometaphase arrest. Conclusions/Significance: These observations demonstrate that the strong early up-regulation of cyclin B1 and Cdc2 contributes critically to the rapid and selective accumulation of prometaphase-arrested cells, a phenomenon associate

    Methylenetetrahydrofolate reductase C677T polymorphism in patients with lung cancer in a Korean population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was designed to investigate an association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and the risk of lung cancer in a Korean population.</p> <p>Methods</p> <p>We conducted a large-scale, case-control study involving 3938 patients with newly diagnosed lung cancer and 1700 healthy controls. Genotyping was performed with peripheral blood DNA for MTHFR C677T polymorphisms. Statistical significance was estimated by logistic regression analysis.</p> <p>Results</p> <p>The MTHFR C677T frequencies of CC, CT, and TT genotypes were 34.5%, 48.5%, and 17% among lung cancer patients, and 31.8%, 50.7%, and 17.5% in the controls, respectively. The MTHFR 677CT and TT genotype showed a weak protection against lung cancer compared with the homozygous CC genotype, although the results did not reach statistical significance. The age- and gender-adjusted odds ratio (OR) of overall lung cancer was 0.90 (95% confidence interval (CI), 0.77-1.04) for MTHFR 677 CT and 0.88 (95% CI, 0.71-1.07) for MTHFR 677TT. However, after stratification analysis by histological type, the MTHFR 677CT genotype showed a significantly decreased risk for squamous cell carcinoma (age- and gender-adjusted OR, 0.78; 95% CI, 0.64-0.96). The combination of 677 TT homozygous with 677 CT heterozygous also appeared to have a protection effect on the risk of squamous cell carcinoma. We observed no significant interaction between the MTHFR C677T polymorphism and age and gender or smoking habit.</p> <p>Conclusions</p> <p>This is the first reported study focusing on the association between MTHFR C677T polymorphisms and the risk of lung cancer in a Korean population. The T allele was found to provide a weak protective association with lung squamous cell carcinoma.</p

    Development of a Bead-Based Multiplex Genotyping Method for Diagnostic Characterization of HPV Infection

    Get PDF
    The accurate genotyping of human papillomavirus (HPV) is clinically important because the oncogenic potential of HPV is dependent on specific genotypes. Here, we described the development of a bead-based multiplex HPV genotyping (MPG) method which is able to detect 20 types of HPV (15 high-risk HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68 and 5 low-risk HPV types 6, 11, 40, 55, 70) and evaluated its accuracy with sequencing. A total of 890 clinical samples were studied. Among these samples, 484 were HPV positive and 406 were HPV negative by consensus primer (PGMY09/11) directed PCR. The genotyping of 484 HPV positive samples was carried out by the bead-based MPG method. The accuracy was 93.5% (95% CI, 91.0–96.0), 80.1% (95% CI, 72.3–87.9) for single and multiple infections, respectively, while a complete type mismatch was observed only in one sample. The MPG method indiscriminately detected dysplasia of several cytological grades including 71.8% (95% CI, 61.5–82.3) of ASCUS (atypical squamous cells of undetermined significance) and more specific for high grade lesions. For women with HSIL (high grade squamous intraepithelial lesion) and SCC diagnosis, 32 women showed a PPV (positive predictive value) of 77.3% (95% CI, 64.8–89.8). Among women >40 years of age, 22 women with histological cervical cancer lesions showed a PPV of 88% (95% CI, 75.3–100). Of the highest risk HPV types including HPV-16, 18 and 31 positive women of the same age groups, 34 women with histological cervical cancer lesions showed a PPV of 77.3% (95% CI, 65.0–89.6). Taken together, the bead-based MPG method could successfully detect high-grade lesions and high-risk HPV types with a high degree of accuracy in clinical samples

    Three SRA-Domain Methylcytosine-Binding Proteins Cooperate to Maintain Global CpG Methylation and Epigenetic Silencing in Arabidopsis

    Get PDF
    Methylcytosine-binding proteins decipher the epigenetic information encoded by DNA methylation and provide a link between DNA methylation, modification of chromatin structure, and gene silencing. VARIANT IN METHYLATION 1 (VIM1) encodes an SRA (SET- and RING-associated) domain methylcytosine-binding protein in Arabidopsis thaliana, and loss of VIM1 function causes centromere DNA hypomethylation and centromeric heterochromatin decondensation in interphase. In the Arabidopsis genome, there are five VIM genes that share very high sequence similarity and encode proteins containing a PHD domain, two RING domains, and an SRA domain. To gain further insight into the function and potential redundancy among the VIM proteins, we investigated strains combining different vim mutations and transgenic vim knock-down lines that down-regulate multiple VIM family genes. The vim1 vim3 double mutant and the transgenic vim knock-down lines showed decreased DNA methylation primarily at CpG sites in genic regions, as well as repeated sequences in heterochromatic regions. In addition, transcriptional silencing was released in these plants at most heterochromatin regions examined. Interestingly, the vim1 vim3 mutant and vim knock-down lines gained ectopic CpHpH methylation in the 5S rRNA genes against a background of CpG hypomethylation. The vim1 vim2 vim3 triple mutant displayed abnormal morphological phenotypes including late flowering, which is associated with DNA hypomethylation of the 5′ region of FWA and release of FWA gene silencing. Our findings demonstrate that VIM1, VIM2, and VIM3 have overlapping functions in maintenance of global CpG methylation and epigenetic transcriptional silencing

    Microscopic annealing process and its impact on superconductivity in T'-structure electron-doped copper oxides

    Full text link
    High-transition-temperature superconductivity arises in copper oxides when holes or electrons are doped into the CuO2 planes of their insulating parent compounds. While hole-doping quickly induces metallic behavior and superconductivity in many cuprates, electron-doping alone is insufficient in materials such as R2CuO4 (R is Nd, Pr, La, Ce, etc.), where it is necessary to anneal an as-grown sample in a low-oxygen environment to remove a tiny amount of oxygen in order to induce superconductivity. Here we show that the microscopic process of oxygen reduction repairs Cu deficiencies in the as-grown materials and creates oxygen vacancies in the stoichiometric CuO2 planes, effectively reducing disorder and providing itinerant carriers for superconductivity. The resolution of this long-standing materials issue suggests that the fundamental mechanism for superconductivity is the same for electron- and hole-doped copper oxides.Comment: 23 pages, 3 figures, accepted for publication in Nature Material

    Combination treatment with doxorubicin and gamitrinib synergistically augments anticancer activity through enhanced activation of Bim

    Get PDF
    Background: A common approach to cancer therapy in clinical practice is the combination of several drugs to boost the anticancer activity of available drugs while suppressing their unwanted side effects. In this regard, we examined the efficacy of combination treatment with the widely-used genotoxic drug doxorubicin and the mitochondriotoxic Hsp90 inhibitor gamitrinib to exploit disparate stress signaling pathways for cancer therapy.Methods: The cytotoxicity of the drugs as single agents or in combination against several cancer cell types was analyzed by MTT assay and the synergism of the drug combination was evaluated by calculating the combination index. To understand the molecular mechanism of the drug synergism, stress signaling pathways were analyzed after drug combination. Two xenograft models with breast and prostate cancer cells were used to evaluate anticancer activity of the drug combination in vivo. Cardiotoxicity was assessed by tissue histology and serum creatine phosphokinase concentration.Results: Gamitrinib sensitized various human cancer cells to doxorubicin treatment, and combination treatment with the two drugs synergistically increased apoptosis. The cytotoxicity of the drug combination involved activation and mitochondrial accumulation of the proapoptotic Bcl-2 family member Bim. Activation of Bim was associated with increased expression of the proapoptotic transcription factor C/EBP-homologous protein and enhanced activation of the stress kinase c-Jun N-terminal kinase. Combined drug treatment with doxorubicin and gamitrinib dramatically reduced in vivo tumor growth in prostate and breast xenograft models without increasing cardiotoxicity.Conclusions: The drug combination showed synergistic anticancer activities toward various cancer cells without aggravating the cardiotoxic side effects of doxorubicin, suggesting that the full therapeutic potential of doxorubicin can be unleashed through combination with gamitrinib.open

    Incidence and mortality of hip fracture among the elderly population in South Korea: a population-based study using the National Health Insurance claims data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lack of epidemiologic information on osteoporotic hip fractures hampers the development of preventive or curative measures against osteoporosis in South Korea. We conducted a population-based study to estimate the annual incidence of hip fractures. Also, we examined factors associated with post-fracture mortality among Korean elderly to evaluate the impact of osteoporosis on our society and to identify high-risk populations.</p> <p>Methods</p> <p>The Korean National Health Insurance (NHI) claims database was used to identify the incidence of hip fractures, defined as patients having a claim record with a diagnosis of hip fracture and a hip fracture-related operation during 2003. The 6-month period prior to 2003 was set as a 'window period,' such that patients were defined as incident cases only if their first record of fracture was observed after the window period. Cox's proportional hazards model was used to investigate the relationship between survival time and baseline patient and provider characteristics available from the NHI data.</p> <p>Results</p> <p>The age-standardized annual incidence rate of hip fractures requiring operation over 50 years of age was 146.38 per 100,000 women and 61.72 per 100,000 men, yielding a female to male ratio of 2.37. The 1-year mortality was 16.55%, which is 2.85 times higher than the mortality rate for the general population (5.8%) in this age group. The risk of post-fracture mortality at one year is significantly higher for males and for persons having lower socioeconomic status, living in places other than the capital city, not taking anti-osteoporosis pharmacologic therapy following fracture, or receiving fracture-associated operations from more advanced hospitals such as general or tertiary hospitals.</p> <p>Conclusion</p> <p>This national epidemiological study will help raise awareness of osteoporotic hip fractures among the elderly population and hopefully motivate public health policy makers to develop effective national prevention strategies against osteoporosis to prevent hip fractures.</p

    A placebo-controlled trial of Korean red ginseng extract for preventing Influenza-like illness in healthy adults

    Get PDF
    <p>Abstracts</p> <p>Background</p> <p>Standardized Korean red ginseng extract has become the best-selling influenza-like illness (ILI) remedy in Korea, yet much controversy regarding the efficacy of the Korean red ginseng (KRG) in reducing ILI incidence remains. The aim of the study is to assess the efficacy of the KRG extract on the ILI incidence in healthy adults.</p> <p>Methods/Design</p> <p>We will conduct a randomized, double-blind, placebo-controlled study at the onset of the influenza seasons. A total of 100 subjects 30-70 years of age will be recruited from the general populations. The subjects will be instructed to take 9 capsules per day of either the KRG extract or a placebo for a period of 3 months. The primary outcome measure is to assess the frequency of ILI onset in participated subjects. Secondary variable measures will be included severity and duration of ILI symptoms. The ILI symptoms will be scored by subjects using a 4-point scale.</p> <p>Discussion</p> <p>This study is a randomized placebo controlled trial to evaluate the efficacy of the KRG extract compared to placebo and will be provided valuable new information about the clinical and physiological effects of the KRG extract on reduction of ILI incidence including flu and upper respiratory tract infections. The study has been pragmatically designed to ensure that the study findings can be implemented into clinical practice if KRG extract can be shown to be an effective reduction strategy in ILI incidence.</p> <p>Trial Registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01478009">NCT01478009</a>.</p

    Alum Adjuvant Enhances Protection against Respiratory Syncytial Virus but Exacerbates Pulmonary Inflammation by Modulating Multiple Innate and Adaptive Immune Cells

    Get PDF
    Respiratory syncytial virus (RSV) is well-known for inducing vaccine-enhanced respiratory disease after vaccination of young children with formalin-inactivated RSV (FI-RSV) in alum formulation. Here, we investigated alum adjuvant effects on protection and disease after FIRSV immunization with or without alum in comparison with live RSV reinfections. Despite viral clearance, live RSV reinfections caused weight loss and substantial pulmonary inflammation probably due to high levels of RSV specific IFN-γ+IL4-, IFN-γ-TNF-α+, IFN-γ+ TNF-α- effector CD4 and CD8 T cells. Alum adjuvant significantly improved protection as evidenced by effective viral clearance compared to unadjuvanted FI-RSV. However, in contrast to unadjuvanted FI-RSV, alum-adjuvanted FI-RSV (FI-RSV-A) induced severe vaccine- enhanced RSV disease including weight loss, eosinophilia, and lung histopathology. Alum adjuvant in the FI-RSV-A was found to be mainly responsible for inducing high levels of RSV-specific IFN-γ-IL4+, IFN-γ-TNF-α+ CD4+ T cells, and proinflammatory cytokines IL-6 and IL-4 as well as B220+ plasmacytoid and CD4+ dendritic cells, and inhibiting the induction of IFN-γ+CD8 T cells. This study suggests that alum adjuvant in FI-RSV vaccines increases immunogenicity and viral clearance but also induces atypical T helper CD4+ T cells and multiple inflammatory dendritic cell subsets responsible for vaccine-enhanced severe RSV disease

    An Effective Assessment of Simvastatin-Induced Toxicity with NMR-Based Metabonomics Approach

    Get PDF
    BACKGROUND: Simvastatin, which is used to control elevated cholesterol levels, is one of the most widely prescribed drugs. However, a daily excessive dose can induce drug-toxicity, especially in muscle and liver. Current markers for toxicity reflect mostly the late stages of tissue damage; thus, more efficient methods of toxicity evaluation are desired. METHODOLOGY/PRINCIPAL FINDINGS: As a new way to evaluate toxicity, we performed NMR-based metabonomics analysis of urine samples. Compared to conventional markers, such as AST, ALT, and CK, the urine metabolic profile provided clearer distinction between the pre- and post-treatment groups treated with toxic levels of simvastatin. Through multivariate statistical analysis, we identified marker metabolites associated with the toxicity. Importantly, we observed that the treatment group could be further categorized into two subgroups based on the NMR profiles: weak toxicity (WT) and high toxicity (HT). The distinction between these two groups was confirmed by the enzyme values and histopathological exams. Time-dependent studies showed that the toxicity at 10 days could be reliably predicted from the metabolic profiles at 6 days. CONCLUSIONS/SIGNIFICANCE: This metabonomics approach may provide a non-invasive and effective way to evaluate the simvastatin-induced toxicity in a manner that can complement current measures. The approach is expected to find broader application in other drug-induced toxicity assessments
    corecore