3 research outputs found

    Inflammation induced by influenza virus impairs human innate immune control of pneumococcus

    Get PDF
    Secondary bacterial pneumonia following influenza infection is a significant cause of mortality worldwide. Upper respiratory tract pneumococcal carriage is important as both determinants of disease and population transmission. The immunological mechanisms that contain pneumococcal carriage are well-studied in mice but remain unclear in humans. Loss of this control of carriage following influenza infection is associated with secondary bacterial pneumonia during seasonal and pandemic outbreaks. We used a human type 6B pneumococcal challenge model to show that carriage acquisition induces early degranulation of resident neutrophils and recruitment of monocytes to the nose. Monocyte function associated with clearance of pneumococcal carriage. Prior nasal infection with live attenuated influenza virus induced inflammation, impaired innate function and altered genome-wide nasal gene responses to pneumococcal carriage. Levels of the cytokine IP-10 promoted by viral infection at the time of pneumococcal encounter was positively associated with bacterial density. These findings provide novel insights in nasal immunity to pneumococcus and viral-bacterial interactions during co-infection

    Anti-protein immunoglobulin M responses to pneumococcus are not associated with aging.

    Get PDF
    The incidence of community-acquired pneumonia and lower respiratory tract infection rises considerably in later life. Immunoglobulin M (IgM) antibody levels to pneumococcal capsular polysaccharide are known to decrease with age; however, whether levels of IgM antibody to pneumococcal proteins are subject to the same decline has not yet been investigated.This study measured serum levels and binding capacity of IgM antibody specific to the pneumococcal surface protein A (PspA) and an unencapsulated pneumococcal strain in serum isolated from hospital patients aged < 60 and ≥ 60, with and without lower respiratory tract infection. A group of young healthy volunteers was used as a comparator to represent adults at very low risk of pneumococcal pneumonia. IgM serum antibody levels were measured by enzyme-linked immunosorbent assay (ELISA) and flow cytometry was performed to assess IgM binding capacity. Linear regression and one-way analysis of variance (ANOVA) tests were used to analyse the results.Levels and binding capacity of IgM antibody to PspA and the unencapsulated pneumococcal strain were unchanged with age.These findings suggest that protein-based pneumococcal vaccines may provide protective immunity in the elderly.The LRTI trial (LRTI and control groups) was approved by the National Health Service Research Ethics Committee in October 2013 (12/NW/0713). Recruitment opened in January 2013 and was completed in July 2013. Healthy volunteer samples were taken from the EHPC dose-ranging and reproducibility trial, approved by the same Research Ethics Committee in October 2011 (11/NW/0592). Recruitment for this study ran from October 2011 until December 2012. LRTI trial: (NCT01861184), EHPC dose-ranging and reproducibility trial: (ISRCTN85403723)
    corecore