2,995 research outputs found

    Fitting EXAFS data using molecular dynamics outputs and a histogram approach

    No full text
    The estimation of metal nanoparticle diameter by analysis of extended x-ray absorption fine structure (EXAFS) data from coordination numbers is nontrivial, particularly for particles <5 nm in diameter, for which the undercoordination of surface atoms becomes an increasingly significant contribution to the average coordination number. These undercoordinated atoms have increased degrees of freedom over those within the core of the particle, which results in an increase in the degree of structural disorder with decreasing particle size. This increase in disorder, however, is not accounted for by the standard means of EXAFS analysis, where each coordination shell is fitted with a single bond length and disorder term. In addition, the surface atoms of nanoparticles have been observed to undergo a greater contraction than those in the core, further increasing the range of bond distances. Failure to account for this structural change results in an increased disorder being measured, and therefore, a lower apparent coordination number and corresponding particle size are found. Here, we employ molecular dynamics (MD) simulations for a range of nanoparticle sizes to determine each of the nearest neighbor bond lengths, which were then binned into a histogram to construct a radial distribution function (RDF). Each bin from the histogram was considered to be a single scattering path and subsequently used in fitting the EXAFS data obtained for a series of carbon-supported platinum nanoparticles. These MD-based fits are compared with those obtained using a standard fitting model using Artemis and the standard model with the inclusion of higher cumulants, which has previously been used to account for the non-Gaussian distribution of neighboring atoms around the absorber. The results from all three fitting methods were converted to particle sizes and compared with those obtained from transmission electron microscopy (TEM) and x-ray diffraction (XRD) measurements. We find that the use of molecular dynamics simulations resulted in an improved fit over both the standard and cumulant models, in terms of both quality of fit and correlation with the known average particle size

    A model-based assessment of the cost-utility of strategies to identify Lynch syndrome in early-onset colorectal cancer patients.

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.BACKGROUND: Lynch syndrome is an autosomal dominant cancer predisposition syndrome caused by mutations in the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2. Individuals with Lynch syndrome have an increased risk of colorectal cancer, endometrial cancer, ovarian and other cancers. Lynch syndrome remains underdiagnosed in the UK. Reflex testing for Lynch syndrome in early-onset colorectal cancer patients is proposed as a method to identify more families affected by Lynch syndrome and offer surveillance to reduce cancer risks, although cost-effectiveness is viewed as a barrier to implementation. The objective of this project was to estimate the cost-utility of strategies to identify Lynch syndrome in individuals with early-onset colorectal cancer in the NHS. METHODS: A decision analytic model was developed which simulated diagnostic and long-term outcomes over a lifetime horizon for colorectal cancer patients with and without Lynch syndrome and for relatives of those patients. Nine diagnostic strategies were modelled which included microsatellite instability (MSI) testing, immunohistochemistry (IHC), BRAF mutation testing (methylation testing in a scenario analysis), diagnostic mutation testing and Amsterdam II criteria. Biennial colonoscopic surveillance was included for individuals diagnosed with Lynch syndrome and accepting surveillance. Prophylactic hysterectomy with bilateral salpingo-oophorectomy (H-BSO) was similarly included for women diagnosed with Lynch syndrome. Costs from NHS and Personal Social Services perspective and quality-adjusted life years (QALYs) were estimated and discounted at 3.5% per annum. RESULTS: All strategies included for the identification of Lynch syndrome were cost-effective versus no testing. The strategy with the greatest net health benefit was MSI followed by BRAF followed by diagnostic genetic testing, costing £5,491 per QALY gained over no testing. The effect of prophylactic H-BSO on health-related quality of life (HRQoL) is uncertain and could outweigh the health benefits of testing, resulting in overall QALY loss. CONCLUSIONS: Reflex testing for Lynch syndrome in early-onset colorectal cancer patients is predicted to be a cost-effective use of limited financial resources in England and Wales. Research is recommended into the cost-effectiveness of reflex testing for Lynch syndrome in other associated cancers and into the impact of prophylactic H-BSO on HRQoL.NIH

    Unconventional magnetism in all-carbon nanofoam

    Get PDF
    We report production of nanostructured carbon foam by a high-repetition-rate, high-power laser ablation of glassy carbon in Ar atmosphere. A combination of characterization techniques revealed that the system contains both sp2 and sp3 bonded carbon atoms. The material is a novel form of carbon in which graphite-like sheets fill space at very low density due to strong hyperbolic curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like behaviour up to 90 K, with a narrow hysteresis curve and a high saturation magnetization. Such magnetic properties are very unusual for a carbon allotrope. Detailed analysis excludes impurities as the origin of the magnetic signal. We postulate that localized unpaired spins occur because of topological and bonding defects associated with the sheet curvature, and that these spins are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10 September 200

    Evaluational adjectives

    Get PDF
    This paper demarcates a theoretically interesting class of "evaluational adjectives." This class includes predicates expressing various kinds of normative and epistemic evaluation, such as predicates of personal taste, aesthetic adjectives, moral adjectives, and epistemic adjectives, among others. Evaluational adjectives are distinguished, empirically, in exhibiting phenomena such as discourse-oriented use, felicitous embedding under the attitude verb `find', and sorites-susceptibility in the comparative form. A unified degree-based semantics is developed: What distinguishes evaluational adjectives, semantically, is that they denote context-dependent measure functions ("evaluational perspectives")—context-dependent mappings to degrees of taste, beauty, probability, etc., depending on the adjective. This perspective-sensitivity characterizing the class of evaluational adjectives cannot be assimilated to vagueness, sensitivity to an experiencer argument, or multidimensionality; and it cannot be demarcated in terms of pretheoretic notions of subjectivity, common in the literature. I propose that certain diagnostics for "subjective" expressions be analyzed instead in terms of a precisely specified kind of discourse-oriented use of context-sensitive language. I close by applying the account to `find x PRED' ascriptions

    Origin of magnetoelectric behavior in BiFeO3_3

    Full text link
    The magnetoelectric behavior of BiFeO3_3 has been explored on the basis of accurate density functional calculations. The structural, electronic, magnetic, and ferroelectric properties of BiFeO3_3 are predicted correctly without including strong correlation effect in the calculation. Moreover, the experimentally-observed elongation of cubic perovskite-like lattice along the [111] direction is correctly reproduced. At high pressure we predicted a pressure-induced structural transition and the total energy calculations at expanded lattice show two lower energy ferroelectric phases, closer in energy to the ground state phase. Band-structure calculations show that BiFeO3_3 will be an insulator in A- and G-type antiferromagnetic phases and a metal in other magnetic configurations. Chemical bonding in BiFeO3_3 has been analyzed using various tools and electron localization function analysis shows that stereochemically active lone-pair electrons at the Bi sites are responsible for displacements of the Bi atoms from the centro-symmetric to the noncentrosymmetric structure and hence the ferroelectricity. A large ferroelectric polarization (88.7 μ\muC/cm2^{2}) is predicted in accordance with recent experimental findings. The net polarization is found to mainly (>> 98%) originate from Bi atoms. Moreover the large scatter in experimentally reported polarization values is due to the large anisotropy in the spontaneous polarization.Comment: 19 pages, 12 figures, 4 table

    Transition between nuclear and quark-gluon descriptions of hadrons and light nuclei

    Full text link
    We provide a perspective on studies aimed at observing the transition between hadronic and quark-gluonic descriptions of reactions involving light nuclei. We begin by summarizing the results for relatively simple reactions such as the pion form factor and the neutral pion transition form factor as well as that for the nucleon and end with exclusive photoreactions in our simplest nuclei. A particular focus will be on reactions involving the deuteron. It is noted that a firm understanding of these issues is essential for unraveling important structure information from processes such as deeply virtual Compton scattering as well as deeply virtual meson production. The connection to exotic phenomena such as color transparency will be discussed. A number of outstanding challenges will require new experiments at modern facilities on the horizon as well as further theoretical developments.Comment: 37 pages, 17 figures, submitted to Reports on Progress in Physic

    Short-range correlations in low-lying nuclear excited states

    Get PDF
    The electromagnetic transitions to various low-lying excited states of 16O, 48Ca and 208Pb are calculated within a model which considers the short-range correlations. In general the effects of the correlations are small and do not explain the required quenching to describe the data.Comment: 6 pages, 2 postscript figures, 1 tabl

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    On the thermomechanical aging of LPBF alloy 718

    Get PDF
    Heat treatment of products post additive manufacture are considered hugely important since the metallurgical condition post process is suboptimal. In the case of nickel-based superalloys, grain size, precipitate distribution and precipitate size are distinct from wrought equivalents. Appropriate heat treatment is required to ensure material performance. In this study, LPBF alloy 718, post-processed using a standard heat treatment, is explored under thermal and thermomechanical exposure conditions (with and without applied stress) to illustrate textural and microstructural evolution. The results show the instability of the LPBF microstructure in terms of grain size, precipitate density, and crystallographic orientation, illustrating the need for an appropriate heat treatment in relation to future service conditions. During thermal exposure only, the instability of the LPBF alloy microstructure was evident as the texture increased with time before decreasing and almost disappearing at the time of fracture. This contrasts with wrought alloy whose texture increases throughout creep testing and reaches a maximum at the time of fracture. An ideal microstructure for improved creep performance was identified and includes large equiaxed grains, elimination of texture, dissolution of Laves and δ phase and the precipitation of small carbides and γ’’ precipitates. Recommendations on how to heat treat LPBF alloy 718 to reach this microstructure are given. Overall, this work showed that LPBF components may become more performant than wrought and conventional equivalents
    • …
    corecore