23,036 research outputs found

    To enhance collaborative learning and practice network knowledge with a virtualization laboratory and online synchronous discussion

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 Internatinal License.Recently, various computer networking courses have included additional laboratory classes in order to enhance students' learning achievement. However, these classes need to establish a suitable laboratory where each student can connect network devices to configure and test functions within different network topologies. In this case, the Linux operating system can be used to operate network devices and the virtualization technique can include multiple OSs for supporting a significant number of students. In previous research, the virtualization application was successfully applied in a laboratory, but focused only on individual assignments. The present study extends previous research by designing the Networking Virtualization-Based Laboratory (NVBLab), which requires collaborative learning among the experimental students. The students were divided into an experimental group and a control group for the experiment. The experimental group performed their laboratory assignments using NVBLab, whereas the control group completed them on virtual machines (VMs) that were installed on their personal computers. Moreover, students using NVBLab were provided with an online synchronous discussion (OSD) feature that enabled them to communicate with others. The laboratory assignments were divided into two parts: Basic Labs and Advanced Labs. The results show that the experimental group significantly outperformed the control group in two Advanced Labs and the post-test after Advanced Labs. Furthermore, the experimental group's activities were better than those of the control group based on the total average of the command count per laboratory. Finally, the findings of the interviews and questionnaires with the experimental group reveal that NVBLab was helpful during and after laboratory class

    Coherent structures in fully-developed pipe turbulence

    Get PDF
    A turbulent mean profile for pipe flow is prescribed which closely matches experimental observations. The nature of perturbations superimposed upon this profile is then considered. Optimal growth calculations predict two distinct classes of structures, clearly associated with near-wall and large-scale structures. Quantitative correspondence of the spanwise wavelength of wall-structures with experimental observations is very good. The response to harmonic forcing is also considered, and the linear growth tested with direct numerical simulation of forced turbulence. Despite the very simple eddy viscosity assumption, this linear approach predicts well the surprisingly large growth of outer-scale modes in the bulk flow. Un profil moyen turbulent est prescrit dans une conduite cylindrique, en adequation avec les observations experimentales. Nous considerons ensuite la nature des perturbations a cet ecoulement synthetique. Le calcul des croissances optimales predit deux types de structures, associees respectivement aux structures de proche-paroi et de grande echelle. Un excellent accord quantitatif est trouve avec les resultats experimentaux quant a la longueur d'onde transversale. La reponse harmonique est egalement etudiee, et la croissance lineaire observee comparee a des simulations numeriques directes de turbulence forcee. Malgre de l'hypothese simple de type `Eddy viscosity', cette approche lineaire predit efficacement la croissance spectaculaire des modes de grande echelle au coeur de l'ecoulement.Comment: 5 pages; Congres Francais de Mecanique, Marseille (2009

    B>πlνB -> \pi l \nu Form Factors Calculated on the Light-Front

    Full text link
    A consistent treatment of BπlνB\rightarrow \pi l \nu decay is given on the light-front. The BB to π\pi transition form factors are calculated in the entire physical range of momentum transfer for the first time. The valence-quark contribution is obtained using relativistic light-front wave functions. Higher quark-antiquark Fock-state of the BB-meson bound state is represented effectively by the Bπ|B^*\pi\rangle configuration, and its effect is calculated in the chiral perturbation theory. Wave function renormalization is taken into account consistently. The Bπ|B^*\pi\rangle contribution dominates near the zero-recoil point (q225q^2\simeq 25 GeV2^2), and decreases rapidly as the recoil momentum increases. We find that the calculated form factor f+(q2)f_+(q^2) follows approximately a dipole q2q^2-dependence in the entire range of momentum transfer.Comment: Revtex, 19 pages, 9 figure

    Dramatic Mobility Enhancements in Doped SrTiO3 Thin Films by Defect Management

    Full text link
    We report bulk-quality n-type SrTiO3 (n-SrTiO3) thin films fabricated by pulsed laser deposition, with electron mobility as high as 6600 cm2 V-1 s-1 at 2 K and carrier density as low as 2.0 x 10^18cm-3 (~ 0.02 at. %), far exceeding previous pulsed laser deposition films. This result stems from precise strontium and oxygen vacancy defect chemistry management, providing a general approach for defect control in complex oxide heteroepitaxy.Comment: 13 pages, 4 figure

    Inverter-Based Low-Voltage CCII- Design and Its Filter Application

    Get PDF
    This paper presents a negative type second-generation current conveyor (CCII-). It is based on an inverter-based low-voltage error amplifier, and a negative current mirror. The CCII- could be operated in a very low supply voltage such as ±0.5V. The proposed CCII- has wide input voltage range (±0.24V), wide output voltage (±0.24V) and wide output current range (±24mA). The proposed CCII- has no on-chip capacitors, so it can be designed with standard CMOS digital processes. Moreover, the architecture of the proposed circuit without cascoded MOSFET transistors is easily designed and suitable for low-voltage operation. The proposed CCII- has been fabricated in TSMC 0.18μm CMOS processes and it occupies 1189.91 x 1178.43μm2 (include PADs). It can also be validated by low voltage CCII filters

    Stoichiometry control of the electronic properties of the LaAlO_3/SrTiO_3 heterointerface

    Full text link
    We investigate the effect of the laser parameters of pulsed laser deposition on the film stoichiometry and electronic properties of LaAlO_3/SrTiO_3 (001) heterostructures. The La/Al ratio in the LaAlO_3 films was varied over a wide range from 0.88 to 1.15, and was found to have a strong effect on the interface conductivity. In particular, the carrier density is modulated over more than two orders of magnitude. The film lattice expansion, caused by cation vacancies, is found to be the important functional parameter. These results can be understood to arise from the variations in the electrostatic boundary conditions, and their resolution, with stoichiometry.Comment: 4 pages, 3 figures, submitted for publicatio

    Fermi surface and superconductivity in low-density high-mobility {\delta}-doped SrTiO3

    Full text link
    The electronic structure of low-density n-type SrTiO3 delta-doped heterostructures is investigated by angular dependent Shubnikov-de Haas oscillations. In addition to a controllable crossover from a three- to two-dimensional Fermi surface, clear beating patterns for decreasing dopant layer thicknesses are found. These indicate the lifting of the degeneracy of the conduction band due to subband quantization in the two-dimensional limit. Analysis of the temperature-dependent oscillations shows that similar effective masses are found for all components, associated with the splitting of the light electron pocket. The dimensionality crossover in the superconducting state is found to be distinct from the normal state, resulting in a rich phase diagram as a function of dopant layer thickness.Comment: 4 pages, 5 figures, submitted for publicatio

    Negative energy and stability in scalar-tensor gravity

    Full text link
    Linearized gravitational waves in Brans-Dicke and scalar-tensor theories carry negative energy. A gauge-invariant analysis shows that the background Minkowski space is stable at the classical level with respect to linear scalar and tensor inhomogeneous perturbations.Comment: 9 pages, latex, to appear in Phys. Rev.
    corecore