363 research outputs found

    Hall effect and resistivity in underdoped cuprates

    Get PDF
    The behaviour of the Hall ratio RH(T)R_{H}(T) as a function of temperature is one of the most intriguing normal state properties of cuprate superconductors. One feature of all the data is a maximum of RH(T)R_{H}(T) in the normal state that broadens and shifts to temperatures well above TcT_c with decreasing doping. We show that a model of preformed pairs-bipolarons provides a selfconsistent quantitative description of RH(T)R_{H}(T) together with in-plane resistivity and uniform magnetic susceptibility for a wide range of doping.Comment: 4 pages, 2 figures, the model and fits were refine

    Angle-resolved photoemission in doped charge-transfer Mott insulators

    Get PDF
    A theory of angle-resolved photoemission (ARPES) in doped cuprates and other charge-transfer Mott insulators is developed taking into account the realistic (LDA+U) band structure, (bi)polaron formation due to the strong electron-phonon interaction, and a random field potential. In most of these materials the first band to be doped is the oxygen band inside the Mott-Hubbard gap. We derive the coherent part of the ARPES spectra with the oxygen hole spectral function calculated in the non-crossing (ladder) approximation and with the exact spectral function of a one-dimensional hole in a random potential. Some unusual features of ARPES including the polarisation dependence and spectral shape in YBa2Cu3O7 and YBa2Cu4O8 are described without any Fermi-surface, large or small. The theory is compatible with the doping dependence of kinetic and thermodynamic properties of cuprates as well as with the d-wave symmetry of the superconducting order parameter.Comment: 8 pages (RevTeX), 10 figures, submitted to Phys. Rev.

    Quantum Gambling Using Two Nonorthogonal States

    Get PDF
    We give a (remote) quantum gambling scheme that makes use of the fact that quantum nonorthogonal states cannot be distinguished with certainty. In the proposed scheme, two participants Alice and Bob can be regarded as playing a game of making guesses on identities of quantum states that are in one of two given nonorthogonal states: if Bob makes a correct (an incorrect) guess on the identity of a quantum state that Alice has sent, he wins (loses). It is shown that the proposed scheme is secure against the nonentanglement attack. It can also be shown heuristically that the scheme is secure in the case of the entanglement attack.Comment: no essential correction, 4 pages, RevTe

    Suppression of decoherence in quantum registers by entanglement with a nonequilibrium environment

    Get PDF
    It is shown that a nonequilibrium environment can be instrumental in suppressing decoherence between distinct decoherence free subspaces in quantum registers. The effect is found in the framework of exact coherent-product solutions for model registers decohering in a bath of degenerate harmonic modes, through couplings linear in bath coordinates. These solutions represent a natural nonequilibrium extension of the standard solution for a decoupled initial register state and a thermal environment. Under appropriate conditions, the corresponding reduced register distribution can propagate in an unperturbed manner, even in the presence of entanglement between states belonging to distinct decoherence free subspaces, and despite persistent bath entanglement. As a byproduct, we also obtain a refined picture of coherence dynamics under bang-bang decoherence control. In particular, it is shown that each radio-frequency pulse in a typical bang-bang cycle induces a revival of coherence, and that these revivals are exploited in a natural way by the time-symmetrized version of the bang-bang protocol.Comment: RevTex3, 26 pgs., 2 figs.. This seriously expanded version accepted by Phys.Rev.A. No fundamentally new content, but rewritten introduction to problem, self-contained introduction of thermal coherent-product states in standard operator formalism, examples of zero-temperature decoherence free Davydov states. Also fixed a typo that propagated into an interpretational blunder in old Sec.3 [fortunately of no consequence

    B -> J/psi K^* Decays in QCD Factorization

    Full text link
    The hadronic decay B -> J K^* is analyzed within the framework of QCD factorization. The spin amplitudes A_0, A_\parallel and A_\perp in the transversity basis and their relative phases are studied using various different form-factor models for B-K^* transition. The effective parameters a_2^h for helicity h=0,+,- states receive different nonfactorizable contributions and hence they are helicity dependent, contrary to naive factorization where a_2^h are universal and polarization independent. QCD factorization breaks down even at the twist-2 level for transverse hard spectator interactions. Although a nontrivial strong phase for the A_\parallel amplitude can be achieved by adjusting the phase of an infrared divergent contribution, the present QCD factorization calculation cannot say anything definite about the phase phi_\parallel. Unlike B -> J/psi K decays, the longitudinal parameter a_2^0 for B -> J/psi K^* does not receive twist-3 corrections and is not large enough to account for the observed branching ratio and the fraction of longitudinal polarization. Possible enhancement mechanisms for a_2^0 are discussed.Comment: 21 pages, 1 figure, a table and a reference added, some typos correcte

    Obstructions to the Existence of Sasaki-Einstein Metrics

    Get PDF
    We describe two simple obstructions to the existence of Ricci-flat Kahler cone metrics on isolated Gorenstein singularities or, equivalently, to the existence of Sasaki-Einstein metrics on the links of these singularities. In particular, this also leads to new obstructions for Kahler-Einstein metrics on Fano orbifolds. We present several families of hypersurface singularities that are obstructed, including 3-fold and 4-fold singularities of ADE type that have been studied previously in the physics literature. We show that the AdS/CFT dual of one obstruction is that the R-charge of a gauge invariant chiral primary operator violates the unitarity bound.Comment: 35 pages, 1 figure; references and a footnote adde

    Epidemic processes with immunization

    Full text link
    We study a model of directed percolation (DP) with immunization, i.e. with different probabilities for the first infection and subsequent infections. The immunization effect leads to an additional non-Markovian term in the corresponding field theoretical action. We consider immunization as a small perturbation around the DP fixed point in d<6, where the non-Markovian term is relevant. The immunization causes the system to be driven away from the neighbourhood of the DP critical point. In order to investigate the dynamical critical behaviour of the model, we consider the limits of low and high first infection rate, while the second infection rate remains constant at the DP critical value. Scaling arguments are applied to obtain an expression for the survival probability in both limits. The corresponding exponents are written in terms of the critical exponents for ordinary DP and DP with a wall. We find that the survival probability does not obey a power law behaviour, decaying instead as a stretched exponential in the low first infection probability limit and to a constant in the high first infection probability limit. The theoretical predictions are confirmed by optimized numerical simulations in 1+1 dimensions.Comment: 12 pages, 11 figures. v.2: minor correction

    Bianchi type I space and the stability of inflationary Friedmann-Robertson-Walker space

    Full text link
    Stability analysis of the Bianchi type I universe in pure gravity theory is studied in details. We first derive the non-redundant field equation of the system by introducing the generalized Bianchi type I metric. This non-redundant equation reduces to the Friedmann equation in the isotropic limit. It is shown further that any unstable mode of the isotropic perturbation with respect to a de Sitter background is also unstable with respect to anisotropic perturbations. Implications to the choice of physical theories are discussed in details in this paper.Comment: 5 pages, some comment adde

    Friedmann Equation and Stability of Inflationary Higher Derivative Gravity

    Get PDF
    Stability analysis on the De Sitter universe in pure gravity theory is known to be useful in many aspects. We first show how to complete the proof of an earlier argument based on a redundant field equation. It is shown further that the stability condition applies to k≠0k \ne 0 Friedmann-Robertson-Walker spaces based on the non-redundant Friedmann equation derived from a simple effective Lagrangian. We show how to derive this expression for the Friedmann equation of pure gravity theory. This expression is also generalized to include scalar field interactions.Comment: Revtex, 6 pages, Add two more references, some typos correcte
    • …
    corecore