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Abstract

We describe two simple obstructions to the existence of Ricci–flat Kähler cone
metrics on isolated Gorenstein singularities or, equivalently, to the existence of
Sasaki–Einstein metrics on the links of these singularities. In particular, this
also leads to new obstructions for Kähler–Einstein metrics on Fano orbifolds.
We present several families of hypersurface singularities that are obstructed,
including 3–fold and 4–fold singularities of ADE type that have been studied
previously in the physics literature. We show that the AdS/CFT dual of one
obstruction is that the R–charge of a gauge invariant chiral primary operator
violates the unitarity bound.
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1 Introduction

The study of string theory and M–theory on singular manifolds is a very rich subject

that has led to many important insights. For geometries that develop an isolated

singularity, one can model the local behaviour using a non–compact manifold. In

this case, a natural geometric boundary condition is for the metric to asymptote to a

cone away from the singularity. This means that one studies a family of metrics that
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asymptotically approach the conical form

gX = dr2 + r2gL (1.1)

with (L, gL) a compact Riemannian manifold. The dynamics of string theory or M–

theory on special holonomy manifolds that are developing an isolated conical singularity

X, with metric (1.1), has proved to be an extremely intricate subject.

A particularly interesting setting is in the context of the AdS/CFT correspondence

[1]. The worldvolume theory of a large number of D3–branes placed at an isolated

conical Calabi–Yau 3–fold singularity is expected to flow, at low energies, to a four–

dimensional N = 1 superconformal field theory. In this case, the AdS/CFT conjecture

states that this theory is dual to type IIB string theory on AdS5 × L [2, 3, 4, 5].

Similar remarks apply to M–theory on conical eight–dimensional singularities with

special holonomy, which lead to superconformal theories in three dimensions that are

dual to AdS4 × L, although far less is known about this situation.

The focus of this paper will be on conical Calabi–Yau singularities, by which we

mean Ricci–flat Kähler metrics of the conical form (1.1). This gives, by definition, a

Sasaki–Einstein metric on the base of the cone L. We tacitly assume that L is simply–

connected which, although not entirely necessary, always ensures the existence of a

globally defined Killing spinor on L. A central role is played by the Reeb vector field

ξ = J

(

r
∂

∂r

)

(1.2)

where J denotes the complex structure tensor on the cone X. ξ is holomorphic, Killing,

and has constant norm on the link L = {r = 1} of the singularity at r = 0. If the orbits

of ξ all close then L has a U(1) isometry, which necessarily acts locally freely, and the

Sasakian structure is said to be either regular or quasi–regular if this action is free

or not, respectively. The orbit space is in general a positively curved Kähler–Einstein

orbifold (V, gV ), which is a smooth manifold in the regular case. More generally, the

generic orbits of ξ need not close, in which case the Sasakian structure is said to be

irregular. The AdS/CFT correspondence maps the symmetry generated by the Reeb

vector field to the R–symmetry of the dual CFT. Thus for the quasi–regular case the

CFT has a U(1) R–symmetry, whereas for the irregular case it has a non–compact R

R–symmetry.

Given a Sasaki–Einstein manifold (L, gL), the cone X, as a complex variety, is an

isolated Gorenstein singularity. If X0 denotes X with the singular point removed,
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we have X0 = R+ × L with r > 0 a coordinate on R+. X being Gorenstein means

simply that there exists a nowhere zero holomorphic (n, 0)–form Ω on X0. One may

then turn things around and ask which isolated Gorenstein singularities admit Sasaki–

Einstein metrics on their links. This is a question in algebraic geometry, and it is

an extremely difficult one. To give some idea of how difficult this question is, let us

focus on the quasi–regular case. Thus, suppose that X has a holomorphic C∗ action,

with orbit space being a Fano1 manifold, or Fano orbifold, V . Then existence of a

Ricci–flat Kähler cone metric on X, with conical symmetry generated by R+ ⊂ C∗, is

well known to be equivalent to finding a Kähler–Einstein metric on V – for a review,

see [6]. Existence of Kähler–Einstein metrics on Fanos is a very subtle problem that

is still unsolved. That is, a set of necessary and sufficient algebraic conditions on V

are not known in general. There are two well–known holomorphic obstructions, due

to Matsushima [7] and Futaki [8]. The latter was related to Sasakian geometry in [9]

and is not in fact an obstruction from the Sasaki–Einstein point view. Specifically,

it is possible to have a Fano V that has non–zero Futaki invariant and thus does not

admit a Kähler-Einstein metric, but nevertheless the link of the total space of the

canonical bundle over V can admit a Sasaki–Einstein metric – the point is simply that

the Reeb vector field is not2 the one associated with the canonical bundle over V . It

is also known that vanishing of these two obstructions is, in general, insufficient for

there to exist a Kähler–Einstein metric on V . It has been conjectured in [11] that V

admits a Kähler–Einstein metric if and only if it is stable; proving this conjecture is

currently a major research programme in geometry – see, for example, [12]. Thus, one

also expects the existence of Ricci–flat Kähler cone metrics on an isolated Gorenstein

singularity X to be a subtle problem. This issue has been overlooked in some of the

physics literature, and it has sometimes been incorrectly assumed, or stated, that such

conical Calabi–Yau metrics exist on particular singularities, as we shall discuss later.

The Reeb vector field contains a significant amount of information about the metric.

For a fixed X0 = R+ × L, the Reeb vector field ξ for a Sasaki–Einstein metric on

L satisfies a variational problem that depends only on the complex structure of X

[13, 9]. This is the geometric analogue of a–maximisation [14] in four dimensional

1We define a Fano orbifold V to be a compact Kähler orbifold, such that the cohomology class of
the Ricci–form in H2(V ; R) is represented by a positive (1, 1)–form on V .

2This happens, for example, when V = F1 – the first del Pezzo surface. In this case both the
Matsushima and Futaki theorems obstruct existence of a Kähler–Einstein metric on V , but there is
nevertheless an irregular Sasaki–Einstein metric on the link in the total space of the canonical bundle
over V [10].
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superconformal field theories. This allows one, in principle and often in practice, to

obtain ξ, and hence in particular the volume, of a Sasaki–Einstein metric on L –

assuming that this metric exists.

Now, for any (2n− 1)–dimensional Einstein manifold (L, gL) with Ric = 2(n− 1)gL,

Bishop’s theorem [15] (see also [16]) implies that the volume of L is bounded from

above by that of the round unit radius sphere. Thus we are immediately led to what

we will call the Bishop obstruction to the existence of Sasaki–Einstein metrics:

If the volume of the putative Sasaki–Einstein manifold, calculated using the

results of [13, 9], is greater than that of the round sphere, then the metric

cannot exist.

It is not immediately obvious that this can ever happen, but we shall see later that this

remarkably simple fact can often serve as a powerful obstruction. We will also discuss

the AdS/CFT interpretation of this result.

The Reeb vector field ξ also leads to a second possible obstruction. Given ξ for

a putative Sasaki–Einstein metric, it is a simple matter to show that holomorphic

functions f on the corresponding cone X with definite charge λ > 0,

Lξf = λif (1.3)

give rise to eigenfunctions of the Laplacian on the Sasaki–Einstein manifold with eigen-

value λ(λ + 2n − 2). Lichnerowicz’s theorem [17] states that the smallest eigenvalue

of this Laplacian is bounded from below by the dimension of the manifold, and this

leads to the restriction λ ≥ 1. Thus we have what we will call the Lichnerowicz

obstruction:

If one can demonstrate the existence of a holomorphic function on X with

positive charge λ < 1 with respect to the putative Reeb vector field ξ, one

concludes that no Sasaki–Einstein metric can exist with this Reeb vector

field.

Again, it is not immediately obvious that this can ever happen. Indeed, if ξ is regular,

so that the orbit space V is a Fano manifold, we show that this cannot happen. Nev-

ertheless, there are infinitely many examples of simple hypersurface singularities with

non–regular Reeb vector fields that violate Lichnerowicz’s bound.

We shall show that for Calabi–Yau 3–folds and 4–folds, the Lichnerowicz obstruction

has a beautiful AdS/CFT interpretation: holomorphic functions on the coneX are dual
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to chiral primary operators in the dual superconformal field theory. The Lichnerowicz

bound then translates into the unitarity bound for the dimensions of the operators.

The plan of the rest of the paper is as follows. In section 2 we discuss the two obstruc-

tions in a little more detail. In section 3 we investigate the obstructions in the context

of isolated quasi–homogeneous hypersurface singularities. We also compare our results

with the sufficient conditions reviewed in [6] for existence of Sasaki–Einstein metrics on

links of such singularities. In section 4 we show that some 3–fold examples discussed in

[18] do not admit Ricci–flat Kähler cone metrics. We briefly discuss the implications for

the dual field theory. The results of this section leave open the possibility3 of a single

new cohomogeneity one Sasaki–Einstein metric on S5 and we present some details of

the relevant ODE that needs to be solved in an appendix. In section 5 we show that

some of the 4–fold examples discussed in [20] also do not admit Ricci–flat Kähler cone

metrics. Section 6 briefly concludes.

2 The obstructions

In this section we describe two obstructions to the existence of a putative Sasaki–

Einstein metric on the link of an isolated Gorenstein singularity X with Reeb vector

field ξ. These are based on Bishop’s theorem [15] and Lichnerowicz’s theorem [17],

respectively. We prove that the case when ξ generates a freely acting circle action,

with orbit space a Fano manifold V , is never obstructed by Lichnerowicz. We also

give an interpretation of Lichnerowicz’s bound in terms of the unitarity bound in field

theory, via the AdS/CFT correspondence.

Let X be an isolated Gorenstein singularity, and X0 be the smooth part of X. We

take X0 to be diffeomorphic as a real manifold to R+ ×L where L is compact, and let

r be a coordinate on R+ with r > 0, so that r = 0 is the isolated singular point of X.

We shall refer to L as the link of the singularity. Since X is Gorenstein, by definition

there exists a nowhere zero holomorphic (n, 0)–form Ω on X0.

Suppose that X admits a Kähler metric that is a cone with respect to a homothetic

vector field r∂/∂r, as in (1.1). This in particular means that L is the orbit space of

r∂/∂r and gL is a Sasakian metric. The Reeb vector field is defined to be

ξ = J

(

r
∂

∂r

)

. (2.1)

3Recently reference [19] appeared. The conclusions of the latter imply that this solution does not
in fact exist.
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In the special case that the Kähler metric on X is Ricci–flat, the case of central interest,

(L, gL) is Sasaki–Einstein and we have

LξΩ = niΩ (2.2)

since Ω is homogeneous of degree n under r∂/∂r. This fixes the normalisation of ξ.

2.1 The Bishop obstruction

The volume vol(L, gL) of a Sasakian metric on the link L depends only on the Reeb

vector field [9]. Thus, specifying a Reeb vector field ξ for a putative Sasaki–Einstein

metric on L is sufficient to specify the volume, assuming that the metric in fact exists.

We define the normalised volume as

V (ξ) =
vol(L, gL)

vol(S2n−1)
(2.3)

where vol(S2n−1) is the volume of the round sphere. Since Bishop’s theorem [15] (see

also [16]) implies that for any (2n − 1)–dimensional Einstein manifold (L, gL) with

Ric = 2(n− 1)gL

vol(L, gL) ≤ vol(S2n−1) (2.4)

we immediatley have

Bishop obstruction: Let (X,Ω) be an isolated Gorenstein singularity

with link L and putative Reeb vector field ξ. If V (ξ) > 1 then X admits no

Ricci–flat Kähler cone metric with Reeb vector field ξ. In particular L does

not admit a Sasaki–Einstein metric with this Reeb vector field.

There are a number of methods for computing the normalised volume V (ξ). For quasi–

regular ξ, the volume V (ξ) is essentially just a Chern number, which makes it clear

that V (ξ) is a holomorphic invariant. In general, one can compute V (ξ) as a function

of ξ, and a number of different formulae have been derived in [13, 9]. In [9] a general

formula for the normalised volume V (ξ) was given that involves (partially) resolving the

singularity X and applying localisation. For toric Sasakian manifolds there is a simpler

formula [13], giving the volume in terms of the toric data defining the singularity. In

this paper we shall instead exploit the fact that the volume V (ξ) can be extracted from

a limit of a certain index–character [9]; this is easily computed algebraically for isolated

hypersurface singularities, which shall constitute our main set of examples in this paper.

6



We briefly recall some of the details from [9]. Suppose we have a holomorphic (C∗)r

action on X. We may define the character

C(q, X) = Tr q (2.5)

as the trace4 of the action of q ∈ (C∗)r on the holomorphic functions on X. Holomor-

phic functions f on X that are eigenvectors of the induced (C∗)r action

(C∗)r : f → qmf , (2.6)

with eigenvalue qm =
∏r

a=1 q
ma

a form a vector space over C of dimension n
m

. Each

eigenvalue then contributes n
m
qm to the trace (2.5). Let ζa form a basis for the Lie

algebra of U(1)r ⊂ (C∗)r, and write the Reeb vector field as

ξ =
r
∑

a=1

baζa . (2.7)

Then the volume of a Sasakian metric on L with Reeb vector field ξ, relative to that

of the round sphere, is given by

V (ξ) = lim
t→0

tn C(qa = exp(−tba), X) . (2.8)

In general, the right hand side of this formula may be computed by partially resolv-

ing X and using localisation. However, for isolated quasi–homogeneous hypersurface

singularities it is straightforward to compute this algebraically.

In addition, it was shown in [9] that the Reeb vector field for a Sasaki–Einstein

metric on L extremises V as a function of the ba, subject to the constraint (2.2). This

is a geometric analogue of a–maximisation [14] in superconformal field theories.

2.2 The Lichnerowicz obstruction

Let f be a holomorphic function on X with

Lξf = λif (2.9)

where R ∋ λ > 0, and we refer to λ as the charge of f under ξ. Since f is holomorphic,

this immediately implies that

f = rλf̃ (2.10)

4As in [9], we don’t worry about where this trace converges, since we are mainly interested in the
behaviour near a certain pole.
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where f̃ is homogeneous degree zero under r∂/∂r – that is, f̃ is the pull–back to X of

a function on the link L. Moreover, since (X, gX) is Kähler,

∇2
Xf = 0 (2.11)

where −∇2
X is the Laplacian on (X, gX). For a metric cone, this is related to the

Laplacian on the link (L, gL) at r = 1 by

∇2
X =

1

r2
∇2

L +
1

r2n−1

∂

∂r

(

r2n−1 ∂

∂r

)

. (2.12)

From this, one sees that

−∇2
Lf̃ = Ef̃ (2.13)

where

E = λ[λ+ (2n− 2)] . (2.14)

Thus any holomorphic function f of definite charge under ξ, or equivalently degree

under r∂/∂r, corresponds to an eigenfunction of the Laplacian on the link. The charge

λ is then related simply to the eigenvalue E by the above formula (2.14).

By assumption, (X, gX) is Ricci–flat Kähler, which implies that (L, gL) is Einstein

with Ricci curvature 2n− 2. The first non–zero eigenvalue E1 > 0 of −∇2
L is bounded

from below:

E1 ≥ 2n− 1 . (2.15)

This is Lichnerowicz’s theorem [17]. Moreover, equality holds if and only if (L, gL) is

isometric to the round sphere S2n−1 [21]. This is important as we shall find examples

of links, that are not even diffeomorphic to the sphere, which hit this bound. From

(2.14), we immediately see that Lichnerowicz’s bound becomes λ ≥ 1.

This leads to a potential holomorphic obstruction to the existence of Sasaki–Einstein

metrics:

Lichnerowicz obstruction: Let (X,Ω) be an isolated Gorenstein singu-

larity with link L and putative Reeb vector field ξ. Suppose that there exists

a holomorphic function f on X of positive charge λ < 1 under ξ. Then

X admits no Ricci–flat Kähler cone metric with Reeb vector field ξ. In

particular L does not admit a Sasaki–Einstein metric with this Reeb vector

field.

8



As we stated earlier, it is not immediately clear that this can ever happen. In fact,

there are examples of hypersurface singularities where this serves as the only obvious

simple obstruction, as we explain later. However, in the next subsection we treat a

situation where Lichnerowicz never obstructs.

Before concluding this subsection we note that the volume of a Sasakian metric on

L with Reeb vector field ξ is also related to holomorphic functions on X of definite

charge, as we briefly reviewed in the previous subsection. In fact we may write (2.8)

as

V (ξ) = lim
t→0

tn Tr exp(−tLr∂/∂r) (2.16)

where r∂/∂r = −J(ξ). Here the trace denotes a trace of the action of Lr∂/∂r on the

holomorphic functions on X. Thus a holomorphic function f of charge λ under ξ

contributes exp(−tλ) to the trace. That (2.16) agrees with (2.8) follows from the fact

that we can write λ = (b,m). Given our earlier discussion relating λ to eigenvalues

of the Laplacian on L, the above trace very much resembles the trace of the heat

kernel, also known as the partition function, on L. In fact, since it is a sum over only

holomorphic eigenvalues, we propose to call it the holomorphic partition function. The

fact that the volume of a Riemannian manifold appears as a pole in the heat kernel is

well known [22], and (2.16) can be considered a holomorphic Sasakian analogue.

Notice then that the Lichnerowicz obstruction involves holomorphic functions on X

of small charge with respect to ξ, whereas the Bishop obstruction is a statement about

the volume, which is determined by the asymptotic growth of holomorphic functions

on X.

2.3 Smooth Fanos

Let V be a smooth Fano Kähler manifold. Let K denote the canonical line bundle

over V . By definition, K−1 is an ample holomorphic line bundle, which thus specifies

a positive class

c1(K
−1) = −c1(K) ∈ H2(V ; Z) ∩H1,1(V ; R) ∼= Pic(V ) . (2.17)

Recall here that Pic(V ) is the group of holomorphic line bundles on V . Let I(V ) denote

the largest positive integer such that c1(K
−1)/I(V ) is an integral class in Pic(V ). I(V )

is called the Fano index of V . For example, I(CP
2) = 3, I(CP

1 ×CP
1) = 2, I(F1) = 1.

Let L be the holomorphic line bundle L = K1/I(V ), which is primitive in Pic(V ) by

construction. Denote the total space of the unit circle bundle in L by L – this is our
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link. We thus have a circle bundle

S1 →֒ L→ V (2.18)

where L is the associated line bundle. If V is simply–connected then L is also simply–

connected, as follows from the Gysin sequence of the fibration (2.18). Note that V

admits a Kähler–Einstein metric if and only if L admits a regular Sasaki–Einstein

metric with Reeb vector field that rotates the S1 fibre of (2.18).

X is obtained from the total space of L by collapsing (or deleting, to obtain X0) the

zero section. Holomorphic functions on X of definite charge are then in 1–1 correspon-

dence with global sections of L−k, which are elements of the group H0(O(L−k)). Let ζ

be the holomorphic vector field on X that rotates the fibre of L with weight one. That

is, if s ∈ H0(O(L−1)) is a holomorphic section of the ample line bundle L−1, viewed as

a holomorphic function on X, then

Lζs = is . (2.19)

Since K = LI(V ) is the canonical bundle of V , it follows that the correctly normalised

Reeb vector field is (see, for example, [9])

ξ =
n

I(V )
ζ . (2.20)

We briefly recall why this is true. Let ψ be a local coordinate such that ξ = ∂/∂ψ.

Then nψ/I(V ) is a local coordinate on the circle fibre of (2.18) with period 2π. This

follows since locally the contact one–form of the Sasakian manifold is η = dψ − A,

where A/n is a connection on the canonical bundle of V .

Holomorphic functions of smallest positive charge obviously correspond to k = 1.

Any section s ∈ H0(O(L−1)) then has charge

λ =
n

I(V )
(2.21)

under ξ. However, it is well known (see, for example, [23], page 245) that for smooth

Fanos V we have I(V ) ≤ n, with I(V ) = n if and only if V = CP
n−1. Thus, in this

situation, we always have λ ≥ 1 and Lichnerowicz never obstructs.

Lichnerowicz’s theorem can only obstruct for non–regular Reeb vector fields.

We expect a similar statement to be true for the Bishop bound. For a regular Sasaki–

Einstein manifold with Reeb vector field ξ and orbit space a Fano manifold V , Bishop’s
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bound may be written

I(V )

∫

V

c1(V )n−1 ≤ n

∫

CP
n−1

c1(CP
n−1)n−1 = nn . (2.22)

It seems reasonable to expect the topological statement (2.22) to be true for any Fano

manifold V , so that Bishop never obstructs in the regular case, although we are unaware

of any proof. Interestingly, this is closely related to a standard conjecture in algebraic

geometry, that bounds
∫

V
c1(V )n−1 from above by nn−1 for any Fano manifold V , with

equality if and only if V = CP
n−1. In general, this stronger statement is false (see

[23], page 251), although it is believed to be true in the special case that V has Picard

number one, i.e. rank(Pic(V )) = 1. This has recently been proven up to dimension

n = 5 [24]. It would be interesting to investigate (2.22) further.

2.4 AdS/CFT interpretation

In this section we show that the Lichnerowicz obstruction has a very natural interpre-

tation in the AdS/CFT dual field theory, in terms of a unitarity bound. We also briefly

discuss the Bishop bound.

Recall that every superconformal field theory possesses a supergroup of symmetries

and that the AdS/CFT duality maps this to the superisometries of the dual geometry.

In particular, in the context of Sasaki–Einstein geometry, it maps the R–symmetry in

the field theory to the isometry generated by the Reeb vector field ξ, and the R–charges

of operators in the field theory are proportional to the weights under ξ. Generically,

Kaluza–Klein excitations in the geometry correspond to gauge invariant operators in

the field theory. These operators are characterised by their scaling dimensions ∆. The

supersymmetry algebra then implies that a general operator satisfies a BPS bound

relating the dimension to the R–charge R: ∆ ≥ (d − 1)R/2. When this bound is

saturated the corresponding BPS operators belong to short representations of the su-

persymmetry algebra, and in particular are chiral. Here we will only consider scalar

gauge invariant operators which are chiral.

It is well known that for any conformal field theory, in arbitrary dimension d, the

scaling dimensions of all operators are bounded as a consequence of unitarity. In

particular, for scalar operators, we have

∆ ≥ d− 2

2
. (2.23)

In section 2.2 we have argued that a necessary condition for the existence of a Sasaki–

Einstein metric is that the charge λ > 0 of any holomorphic function on the corre-
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sponding Calabi–Yau cone must satisfy the bound

λ ≥ 1 . (2.24)

In the following, we will show that these two bounds coincide.

We start with a gauge theory realised on the world–volume of a large number of D3

branes, placed at a 3–fold Gorenstein singularity X. The affine variety X can then be

thought of as (part of) the moduli space of vacua of this gauge theory. In particular,

the holomorphic functions, defining the coordinate ring of X, correspond to (scalar)

elements of the chiral ring of the gauge theory [25]. Recalling that an AdS4/5 × L7/5

solution arises as the near–horizon limit of a large number of branes at a Calabi–Yau

4–fold/3–fold conical singularity, it is clear that the weights λ of these holomorphic

functions under the action of r∂/∂r must be proportional to the scaling dimensions ∆

of the dual operators, corresponding to excitations in AdS space. We now make this

relation more precise.

According to the AdS/CFT dictionary [26, 27], a generic scalar excitation Φ in AdS

obeying

(2AdSd+1
−m2) Φ = 0 (2.25)

and which behaves like ρ−∆ near the boundary of AdS (ρ→ ∞), is dual to an operator

in the dual CFT with scaling dimension

m2 = ∆(∆ − d) ⇒ ∆± =
d

2
±
√

d2

4
+m2 . (2.26)

More precisely, for m2 ≥ −d2/4 + 1 the dimension of the operator is given by ∆+.

However, for −d2/4 < m2 < −d2/4+1 one can take either ∆± and these will correspond

to inequivalent CFTs [28, 29]. Notice that ∆+ is always well above the bound implied

by unitarity. On the other hand, ∆− saturates this bound for m2 = −d2/4 + 1.

The values for m2 can be obtained from the eigenvalues E of the scalar Laplacian

−∇2
L on the internal manifold L by performing a Kaluza–Klein analysis. The modes

corresponding to the chiral primary operators have been identified in the literature in

the context of a more general analysis for Einstein manifolds; see [28, 30] for type IIB

supergravity compactified on L5, and [31, 32] for M–theory compactified on L7.

Consider first d = 4 (i.e. n = 3). The supergravity modes dual to chiral operators

are a mixture of the trace mode of the internal metric and the RR four–form and lead

to [33, 28, 30]

m2 = E + 16 − 8
√
E + 4 . (2.27)
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Combining this with (2.14) it follows that

∆± = 2 ± |λ− 2| (2.28)

so that ∆ = λ, providing that we take ∆− for λ < 2 and ∆+ for λ ≥ 2. Notice

that for λ = 2, ∆+ = ∆−, and this corresponds to the Breitenlohner–Freedman bound

m2(λ = 2) = −4 for stability in AdS5.

The case d = 3 (i.e. n = 4), relevant for AdS4×L7 geometries, is similar. The scalar

supergravity modes corresponding to chiral primaries [31, 32] are again a mixture of

the metric trace and the three–form potential [34], and fall into short N = 2 multiplets.

Their masses are given by5 [34, 35, 32]

m2 =
E

4
+ 9 − 3

√
E + 9 . (2.29)

Combing this with (2.14) it follows that

∆± =
1

2
(3 ± |λ− 3|) (2.30)

so that ∆ = 1
2
λ, providing that we take ∆− for λ < 3 and ∆+ for λ ≥ 3. Once

again the switching of the two branches occurs at the Breitenlohner–Freedman bound

m2(λ = 3) = −9/4 for stability in AdS4.

In summary, we have shown that

∆ =

{

λ for d = 4
1
2
λ for d = 3

. (2.31)

Thus in both cases relevant for AdS/CFT the Lichnerowicz bound λ ≥ 1 is equivalent

to the unitarity bound (2.23).

The Bishop bound also has a direct interpretation in field theory. Recall that the

volume of the Einstein 5–manifold (L, gL) is related to the exact a central charge of

the dual four dimensional conformal field theory via [36] (see also [37])

a(L) =
π3N2

4vol(L, gL)
(2.32)

where N is the number of D3–branes. The Bishop bound then implies that

a(L) ≥ N2

4
= a(N = 4) (2.33)

5Note that the mass formulae in [35] are relative to the operator 2AdS4
− 32. Moreover, the factor

of four mismatch between their m2 and ours is simply due to the fact that it is actually m2R2 that
enters in (2.26), and the radius of AdS4 is 1/2 that of AdS5.
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where N2/4 is the central charge of N = 4 super Yang–Mills theory. One can give

a heuristic argument for this inequality, as follows6. By appropriately Higgsing the

dual field theory, and then integrating out the massive fields, one expects to be able

to flow to N = 4 super Yang–Mills theory. This is because the Higgsing corresponds

to moving the D3–branes away from the singular point to a smooth point of the cone,

at which the near horizon geometry becomes AdS5 ×S5. Since the number of massless

degrees of freedom is expected to decrease in such a process, we also expect that the a

central charge to decrease. This would then explain the inequality (2.33).

3 Isolated hypersurface singularities

In this section we describe links of isolated quasi–homogeneous hypersurface singular-

ities. These provide many simple examples of both obstructions.

Let wi ∈ Z+, i = 1, . . . , n + 1, be a set of positive weights. We denote these by a

vector w ∈ (Z+)n+1. This defines an action of C∗ on Cn+1 via

(z1, . . . , zn+1) 7→ (qw1z1, . . . , q
wn+1zn+1) (3.1)

where q ∈ C∗. Without loss of generality one can take the set {wi} to have no common

factor. This ensures that the above C∗ action is effective. However, for the most part,

this is unnecessary for our purposes and we shall not always do this. Let

F : C
n+1 → C (3.2)

be a quasi–homogeneous polynomial on Cn+1 with respect to w. This means that F

has definite degree d under the above C∗ action:

F (qw1z1, . . . , q
wn+1zn+1) = qdF (z1, . . . , zn+1) . (3.3)

Moreover we assume that the affine algebraic variety

X = {F = 0} ⊂ C
n+1 (3.4)

is smooth everywhere except at the origin (0, 0, . . . , 0). For obvious reasons, such X

are called isolated quasi–homogeneous hypersurface singularities. The corresponding

link L is the intersection of X with the unit sphere in Cn+1:

n+1
∑

i=1

|zi|2 = 1 . (3.5)

6We thank Ken Intriligator for this argument.
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A particularly nice set of such singularities are provided by so–called Brieskorn–Pham

singularities. These take the particular form

F =

n+1
∑

i=1

zai

i (3.6)

with a ∈ (Z+)n+1. Thus the weights of the C∗ action are given by wi = d/ai. The

corresponding hypersurface singularities X are always isolated, as is easily checked.

Moreover, the topology of the links L are also extremely well understood – see [39]

for a complete description of the homology groups of L. In particular, L is known

to be (n − 2)–connected, meaning that the homotopy groups are πa(L) = 0 for all

a = 1, . . . , n− 2.

Returning to the general case, we may define a nowhere zero holomorphic (n, 0)–form

Ω on the smooth part of X by

Ω =
dz1 ∧ · · · ∧ dzn

∂F/∂zn+1
. (3.7)

This defines Ω on the patch where ∂F/∂zn+1 6= 0. One has similar expressions on

patches where ∂F/∂zi 6= 0 for each i, and it is simple to check that these glue together

into a nowhere zero form Ω. Thus all such X are Gorenstein, and moreover they come

equipped with a holomorphic C∗ action by construction. The orbit space of this C∗

action, or equivalently the orbit space of U(1) ⊂ C∗ on the link, is a complex orbifold

V . In fact, V is the weighted variety defined by {F = 0} in the weighted projective

space WCP
n
[w1,w2,...,wn+1]

. The latter is the quotient of the non–zero vectors in Cn+1 by

the weighted C∗ action

WCP
n
[w1,w2,...,wn+1] =

(

C
n+1 \ {(0, 0, . . . , 0)}

)

/C∗ (3.8)

and is a complex orbifold with a natural Kähler orbifold metric, up to scale, induced

from Kähler reduction of the flat metric on Cn+1. It is not difficult to show that V is

a Fano orbifold if and only if

|w| − d > 0 (3.9)

where |w| =
∑n+1

i=1 wi. To see this, first notice that |w| − d is the charge of Ω under

U(1) ⊂ C∗. To be precise, if ζ denotes the holomorphic vector field on X with

Lζzj = wjizj (3.10)

for each j = 1, . . . , n+ 1, then

LζΩ = (|w| − d)iΩ . (3.11)
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Positivity of this charge |w| − d then implies [9] that the cohomology class of the

natural Ricci–form induced on V is represented by a positive (1, 1)–form, which is the

definition that V is Fano.

If there exists a Ricci–flat Kähler metric on X which is a cone under R+ ⊂ C
∗, then

the correctly normalised Reeb vector field is thus

ξ =
n

|w| − d
ζ . (3.12)

We emphasise that here we will focus on the possible (non–)existence of a Sasaki–

Einstein metric on the link L which has this canonical vector field as its Reeb vector

field. It is possible that such metrics are obstructed, but that there exists a Sasaki–

Einstein metric on L with a different Reeb vector field. This may be investigated using

the results of [9]. In particular we shall come back to this point for a class of 3–fold

examples in section 4.

3.1 The Bishop obstruction

A general formula for the volume of a Sasaki–Einstein metric on the link of an isolated

quasi–homogeneous hypersurface singularity was given in [40]. Strictly speaking, this

formula was proven only when the Fano V is well–formed. This means that the orbifold

loci of V are at least complex codimension two. When V is not well–formed, the

singular sets of V considered as an orbifold and as an algebraic variety are in fact

different. A simple example is the weighted projective space WCP
1
[p,q] where hcf(p, q) =

1. As an orbifold, this is topologically a 2–sphere with conical singularities at the north

and south poles of polar angle 2π/p and 2π/q, respectively. As an algebraic variety,

this weighted projective space is just CP
1 since C/Zp = C. In fact, as a manifold it

is diffeomorphic to S2, for the same reason. When we say Kähler–Einstein orbifold

metric, we must keep track of this complex codimension one orbifold data in the non–

well–formed case. For further details, the reader is directed to the review [6].

Assuming that there exists a Sasaki–Einstein metric with Reeb action U(1) ⊂ C∗,

then the volume of this link when V is well–formed is given by [40]

vol(L) =
2d

w(n− 1)!

(

π(|w| − d)

n

)n

. (3.13)

Here w =
∏n+1

i=1 wi denotes the product of the weights.

Using the earlier formula (2.8), we may now give an alternative derivation of this

formula. The advantage of this approach is that, in contrast to [40], we never descend
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to the orbifold V . This allows us to dispense with the well–formed condition, and show

that (3.13) holds in general. The authors of [40] noted that their formula seemed to

apply to the general case.

Let us apply (2.8) to isolated quasi–homogeneous hypersurface singularities. Let

q ∈ C∗ denote the weighted action on X. We may compute the character C(q,X)

rather easily, since holomorphic functions on X descend from holomorphic functions

on Cn+1, and the trace over the latter is simple to compute. A discussion of precisely

this problem may be found in [41]. According to the latter reference, the character is

simply

C(q,X) =
1 − qd

∏n+1
i=1 (1 − qwi)

. (3.14)

The limit (2.8) is straightforward to take, giving the normalised volume

V (ξ) =
d

wbn
(3.15)

where, as above,

ξ = bζ (3.16)

and ζ generates the U(1) ⊂ C∗ action. Thus, from our earlier discussion on the charge

of Ω, we have

b =
n

|w| − d
(3.17)

giving

vol(L) =
d (|w| − d)n

wnn
vol(S2n−1) . (3.18)

Restoring

vol(S2n−1) =
2πn

(n− 1)!
(3.19)

we thus obtain the result (3.13).

Bishop’s theorem then requires, for existence of a Sasaki–Einstein metric on L with

Reeb vector field ξ generating the canonical U(1) action,

d (|w| − d)n ≤ wnn . (3.20)

We shall see that infinitely many isolated quasi–homogeneous hypersurface singularities

with Fano V violate this inequality.
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3.2 The Lichnerowicz obstruction

As we already mentioned, holomorphic functions on X are simply restrictions of holo-

morphic functions on C
n+1. Thus the smallest positive charge holomorphic function is

zm, where m ∈ {1, . . . , n+ 1} is such that

wm = min{wi, i = 1, . . . , n+ 1} . (3.21)

Of course, m might not be unique, but this is irrelevant since all such zm have the same

charge in any case. This charge is

λ =
nwm

|w| − d
(3.22)

and thus the Lichnerowicz obstruction becomes

|w| − d ≤ nwm . (3.23)

Moreover, this bound can be saturated if and only if X is Cn with its flat metric.

It is again clearly trivial to construct many examples of isolated hypersurface singu-

larities that violate this bound.

3.3 Sufficient conditions for existence

In a series of works by Boyer, Galicki and collaborators, many examples of Sasaki–

Einstein metrics have been shown to exist on links of isolated quasi–homogeneous

hypersurface singularities of the form (3.6). Weighted homogeneous perturbations of

these singularities can lead to continuous families of Sasaki–Einstein metrics. For a

recent review of this work, we refer the reader to [6] and references therein.

Existence of these metrics is proven using the continuity method. One of the sufficient

(but far from necessary) conditions for there to exist a Sasaki–Einstein metric is that

the weights satisfy the condition [6]

|w| − d <
n

(n− 1)
wm . (3.24)

In particular, for n > 2 this implies that

|w| − d < nwm (3.25)

which is precisely Lichnerowicz’s bound. Curiously, for n = 2 the Lichnerowicz bound

and (3.24) are the same, although this case is rather trivial.
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4 A class of 3–fold examples

Our first set of examples are given by the 3–fold singularities with weights w =

(k, k, k, 2) and polynomial

F =
3
∑

i=1

z2
i + zk

4 (4.1)

where k is a positive integer. The corresponding isolated hypersurface singularities

Xk = {F = 0} are of Brieskorn–Pham type. Notice that X1 = C3 and X2 is the

ordinary double point singularity, better known to physicists as the conifold. Clearly,

both of these admit Ricci–flat Kähler cone metrics and moreover, the Sasaki–Einstein

metrics are homogeneous.

The differential topology of the links Lk can be deduced using the results of [39],

together with Smale’s theorem for 5–manifolds. In particular, for k odd, the link Lk is

diffeomorphic to S5. For k = 2p even, one can show that L2p
∼= S2 × S3 (alternatively,

see Lemma 7.1 of [42]).

The Fanos Vk are not well–formed for k > 2. In fact, the subvariety z4 = 0 in Vk is

a copy of CP
1, which is a locus of Zk orbifold singularities for k odd, and Zk/2 orbifold

singularities for k even. As algebraic varieties, all the odd k are equivalent to CP
2, and

all the even k are equivalent to CP
1 × CP

1. As orbifolds, they are clearly all distinct.

4.1 Obstructions

These singularities have appeared in the physics literature [18] where it was assumed

that all Xk admitted conical Ricci–flat Kähler metrics, with Reeb action corresponding

to the canonical U(1) action. In fact, it is trivial to show that the Bishop bound (3.20)

is violated for all k > 20. Moreover, the Lichnerowicz bound (3.23) is even sharper:

for k ≥ 2, z4 has smallest7 charge under ξ, namely

λ =
6

k + 2
(4.2)

which immediately rules out all k > 4. For k = 4 we have λ = 1. Recall that, according

to [21], this can happen if and only if L4 is the round sphere. But we already argued

that L4 = S2 × S3, which rules out k = 4 also. Thus the only link that might possibly

admit a Sasaki–Einstein metric with this U(1) Reeb action, apart from k = 1, 2, is

k = 3. We shall return to the k = 3 case in the next subsection.

7For k = 1, zi, i = 1, 2, 3 have the smallest charge λ = 1. This is consistent with the fact that
k = 1 corresponds to the link L1 = S5 with its round metric.
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Given the contradiction, one might think that perhaps the canonical C∗ action is

not the critical one, in the sense of [9]. Writing

F = z2
1 + uv + zk

4 (4.3)

there is clearly a (C∗)2 action generated by weights (k, k, k, 2) and (0, 1,−1, 0) on

(z1, u, v, z4), respectively. The second U(1) ⊂ C∗ is the maximal torus of SO(3) acting

on the zi, i = 1, 2, 3, in the vector representation. It is then straightforward to compute

the volume of the link as a function of the Reeb vector field

ξ =
2
∑

a=1

baζa (4.4)

using the character formula in [41] and taking the limit as in (2.8). We obtain

V (b1, b2) =
2kb1

2b1 · kb1(kb1 + b2)(kb1 − b2)
=

1

b1(kb1 + b2)(kb1 − b2)
. (4.5)

The first component b1 is fixed by the charge of Ω, as above, to be

b1 =
3

k + 2
. (4.6)

According to [9], the critical Reeb vector field for the putative Sasaki–Einstein metric

is obtained by setting to zero the derivative of V (b1, b2), with respect to b2. This

immediately gives b2 = 0. Thus the original weighted C∗ action is indeed a critical

point of the Sasakian–Einstein–Hilbert action on the link, in this 2–dimensional space of

Reeb vector fields. We could have anticipated this result without computing anything.

According to [9], the critical Reeb vector field could not have mixed with any vector

field in the Lie algebra of a U(1) subgroup of SO(3), since the latter group is semi–

simple.

4.2 Cohomogeneity one metrics

It is interesting to observe that any conical Ricci–flat Kähler metric on Xk would nec-

essarily have U(1)×SO(3) isometry (the global form of the effectively acting isometry

group will depend on k mod 2). This statement follows from Matsushima’s theorem

[7]. Specifically, Matsushima’s theorem says that the isometry group of a Kähler–

Einstein manifold8 (V, gV ) is a maximal compact subgroup of the group of complex

8The generalisation to orbifolds is straightforward.
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automorphisms of V . Quotienting Lk by the U(1) action, one would thus have Kähler–

Einstein orbifold metrics on Vk with an SO(3) isometry, whose generic orbit is three–

dimensional. In other words, these metrics, when they exist, can be constructed using

standard cohomogeneity one techniques. In fact this type of construction is very well

motivated since demanding a local SU(2) × U(1)2 isometry is one way in which the

Sasaki–Einstein metrics of [43] can be constructed (in fact they were actually found

much more indirectly via M–theory [44]).

However, apart from the k = 3 case, and of course the k = 1 and k = 2 cases,

we have already shown that any such construction must fail. For k = 3, the relevant

ODEs that need to be solved have actually been written down in [45]. In appendix A

we record these equations, as well as the boundary conditions that need to be imposed.

We have been unable to integrate these equations, so the question of existence of a

Sasaki–Einstein metric on L3 remains open.

4.3 Field theory

In [18] a family of supersymmetric quiver gauge theories were studied whose classical

vacuum moduli space reproduces the affine varieties X2p. These theories were argued

to flow for large N in the IR to a superconformal fixed point, AdS/CFT dual to a

Sasaki–Einstein metric on the link L2p for all p. Indeed, the R–charges of fields may be

computed using a–maximisation [14], and agree with the naive geometric computations,

assuming that the Sasaki–Einstein metrics on L2p exist. However, as we have already

seen, these metrics cannot exist for any p > 1. We argued in section 2 that this

bound, coming from Lichnerowicz’s theorem, is equivalent to the unitarity bound in

the CFT. We indeed show that a gauge invariant chiral primary operator, dual to the

holomorphic function z4 that provides the geometric obstruction, violates the unitarity

bound for p > 1.

Before we recall the field theories for k = 2p even, let us make a remark on the Xk

singularities when k is odd. In the latter case, it is not difficult to prove that Xk admits

no crepant resolution9. That is, there is no blow–up of Xk to a smooth manifold X̃ with

trivial canonical bundle. In such cases the field theories might be quite exotic, and in

particular not take the form of quiver gauge theories. In contrast, the X2p singularities

are resolved by blowing up a single exceptional CP
1 [47], which leads to a very simple

9Since the link Lk = S5 for all odd k, it follows that Pic(Xk \ {r = 0}) is trivial, and hence Xk

is factorial. The isolated singularity at r = 0 is terminal for all k. These two facts, together with
Corollary 4.11 of [46], imply that Xk has no crepant resolution.
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class of gauge theories.

X Y

A

B

Figure 1: Quiver diagram of the A1 orbifold gauge theory.

Consider the quiver diagram for the N = 2 A1 orbifold, depicted in Figure 1. The

two nodes represent two U(N) gauge groups. There are 6 matter fields: an adjoint for

each gauge group, that we denote by X and Y , and two sets of bifundamental fields

AI and BI , where I = 1, 2 are SU(2) flavour indices. Here the AI are in the (N, N̄)

representation of U(N) × U(N), and the BI are in the (N̄, N) representation. This

is the quiver for N D3–branes at the C × (C2/Z2) singularity, where C2/Z2 is the A1

surface singularity. However, for our field theories indexed by p, the superpotential is

given by

W = Tr
[

Xp+1 + (−1)pY p+1 +X(A1B1 + A2B2) + Y (B1A1 +B2A2)
]

. (4.7)

It is straightforward to verify that the classical vacuum moduli space of this gauge

theory gives rise to the X2p singularities. In fact these gauge theories were also studied

in detail in [48], and we refer the reader to this reference for further details. The SU(2)

flavour symmetry corresponds to the SO(3) automorphism of X2p.

It is a simple matter to perform a–maximisation for this theory, taken at face value.

Recall this requires one to assign trial R–charges to each field, and impose the con-

straints that W has R–charge 2, and that the β–functions of each gauge group vanish.

One then locally maximises the a–function

a =
3N2

32

(

2 +
∑

i

3(R(Xi) − 1)3 − (R(Xi) − 1)

)

(4.8)

subject to these constraints, where the sum is taken over all R–charges of fields Xi.

One finds the results, as in [18]

R(X) = R(Y ) =
2

p+ 1

R(AI) = R(BI) =
p

p+ 1
(4.9)
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and central charge

a(L2p) =
27p2N2

8(p+ 1)3
. (4.10)

This corresponds, under the AdS/CFT relation (2.32), to a Sasaki–Einstein volume

vol(L2p) =
2π3(p+ 1)3

27p2
, (4.11)

which agrees with the general formula (3.13). Thus an initial reaction [18] is that one

has found agreement between geometric and field theory results. However, the results

of this paper imply that the Sasaki–Einstein metrics on L2p do not exist for p > 1. In

fact, it is clear that, upon closer inspection, the gauge invariant chiral primary operator

TrX (or TrY ) has R–charge 2/(p+1), which violates the unitarity bound for p > 1. In

fact, when one computes the vacuum moduli space for a single D3–brane N = 1, TrX is

identified with the holomorphic function z4, and the unitarity bound and Lichnerowicz

bound are identical, as we argued to be generally true in section 2.

The superpotential (4.7) can be regarded as a deformation of the A1 orbifold theory.

For p > 2, using a–maximisation (and assuming an a–theorem), this was argued in [48]

to be an irrelevant deformation (rather than a “dangerously irrelevant” operator). This

is therefore consistent with our geometric results. The case p = 2 is interesting since

it appears to be marginal. If it is exactly marginal, we expect a one parameter family

of solutions with fluxes that interpolates between the A1 orbifold with link S5/Z2 and

the X4 singularity with flux.

5 Other examples

In this section we present some further obstructed examples. In particular we examine

ADE 4–fold singularities, studied in [20]. All of these, with the exception of D4 and

the obvious cases of A0 and A1, do not admit Ricci–flat Kähler cone metrics with the

canonical weighted C∗ action. We also examine weighted C∗ actions on Cn.
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5.1 ADE 4–fold singularities

Consider the polynomials

H = zk
1 + z2

2 + z2
3 Ak−1

H = zk
1 + z1z

2
2 + z2

3 Dk+1

H = z3
1 + z4

2 + z2
3 E6

H = z3
1 + z1z

3
2 + z2

3 E7

H = z3
1 + z5

2 + z2
3 E8 . (5.1)

The hypersurfaces {H = 0} ⊂ C3 are known as the ADE surface singularities. Their

links LADE are precisely S3/Γ where Γ ⊂ SU(2) are the finite ADE subgroups of SU(2)

acting on C2 in the vector representation. Thus these Gorenstein singularities are both

hypersurface singularities and quotient singularities. Clearly, the links admit Sasaki–

Einstein metrics – they are just the quotient of the round metric on S3 by the group

Γ.

The 3–fold singularities of the previous section are obtained from the polynomial H

for Ak−1 by simply adding an additional term z2
4 (and relabelling). More generally, we

may define the ADE n–fold singularities as the zero loci X = {F = 0} of

F = H +

n+1
∑

i=4

z2
i . (5.2)

Let us consider the particular case n = 4. The C∗ actions, for the above cases, are

generated by the weight vectors

w = (2, k, k, k, k) d = 2k Ak−1

w = (2, k − 1, k, k, k) d = 2k Dk+1

w = (4, 3, 6, 6, 6) d = 12 E6

w = (6, 4, 9, 9, 9) d = 18 E7

w = (10, 6, 15, 15, 15) d = 30 E8 . (5.3)

It is then straightforward to verify that for all the Ak−1 singularities with k > 3 the

holomorphic function z1 on X violates the Lichnerowicz bound (3.23). The case k = 3

saturates the bound, but since the link is not10 diffeomorphic to S7 Obata’s result [21]

again rules this out. For all the exceptional singularities the holomorphic function z2 on

10One can easily show that H3(L; Z) = Zk for the links of the Ak−1 4–fold singularities.
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X violates (3.23). The Dk+1 singularities are a little more involved. The holomorphic

function z1 rules out all k > 3. On the other hand the function z2 rules out k = 2, but

the Lichnerowicz bound is unable to rule out k = 3.

To summarise, the only ADE 4–fold singularity that might possibly admit a Ricci–

flat Kähler cone metric with the canonical C∗ action above, apart from the obvious

cases of A0 and A1, is D4. Existence of a Sasaki–Einstein metric on the link of this

singularity is therefore left open. It would be interesting to investigate whether or not

there exist Ricci–flat Kähler metrics that are cones with a different Reeb action. In

light of our results on the non–existence of the above Sasaki–Einstein metrics, it would

also be interesting to revisit the field theory analysis of [20].

5.2 Weighted actions on C
n

Consider X = Cn, with a weighted C∗ action with weights v ∈ (Z+)n. The orbit space

of non–zero vectors is the weighted projective space WCP
n−1
[v1,...,vn]. Existence of a Ricci–

flat Kähler cone metric on Cn, with the conical symmetry generated by this C∗ action, is

equivalent to existence of a Kähler–Einstein orbifold metric on the weighted projective

space. In fact, it is well known that no such metric exists: the Futaki invariant of

the weighted projective space is non–zero. In fact, one can see this also from the

Sasakian perspective through the results of [13, 9]. The diagonal action with weights

v = (1, 1, . . . , 1) is clearly a critical point of the Sasakian–Einstein–Hilbert action,

and this critical point was shown to be unique in the space of toric Sasakian metrics.

Nonetheless, in this subsection we show that Lichnerowicz’s bound and Bishop’s bound

both obstruct existence of these metrics.

The holomorphic (n, 0)–form on X = Cn has charge |v| under the weighted C∗

action, which implies that the correctly normalised Reeb vector field is

ξ =
n

|v|ζ (5.4)

with notation as before, so that ζ is the vector field that generates U(1) ⊂ C∗. The

Lichnerowicz bound is therefore
nvm

|v| ≥ 1 (5.5)

where vm is the (or a particular) smallest weight. However, clearly |v| ≥ nvm, with

equality if and only if v is proportional to (1, 1, . . . , 1). Thus in fact

nvm

|v| ≤ 1 (5.6)
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with equality only in the diagonal case, which is just Cn with the canonical Reeb vector

field. Thus our Lichnerowicz bound obstructs Kähler–Einstein orbifold metrics on all

weighted projective spaces, apart from CP
n−1 of course.

For the Bishop bound, notice that a Kähler–Einstein orbifold metric on WCP
n−1
[v1,...,vn]

would give rise to a Sasaki–Einstein metric on S2n−1 with a weighted Reeb action. The

volume of this metric, relative to the round sphere, would be

V =
|v|n
nnv

(5.7)

where v =
∏n

i=1 vi denotes the product of the weights. This may either be derived using

the methods described earlier, or using the toric methods of [13]. Amusingly, (5.7) is

precisely the arithmetic mean of the weights v divided by their geometric mean, all

to the nth power. Thus the usual arithmetic mean–geometric mean inequality gives

V ≥ 1 with equality if and only if v is proportional to (1, 1, . . . , 1). This is precisely

opposite to Bishop’s bound, thus again ruling out all weighted projective spaces, apart

from CP
n−1.

Thus Kähler–Einstein orbifold metrics on weighted projective spaces are obstructed

by the Futaki invariant, the Bishop obstruction, and the Lichnerowicz obstruction. In

some sense, these Fano orbifolds couldn’t have more wrong with them.

6 Conclusions

The problem of existence of conical Ricci–flat Kähler metrics on a Gorenstein n–fold

singularity X is a subtle one; a set of necessary and sufficient algebraic conditions is

unknown. This is to be contrasted with the case of compact Calabi–Yau manifolds,

where Yau’s theorem guarantees the existence of a unique Ricci–flat Kähler metric in

a given Kähler class.

In this paper we have presented two simple necessary conditions for existence of

a Ricci–flat Kähler cone metric on a given isolated Gorenstein singularity X with

specified Reeb vector field. The latter is in many ways similar to specifying a “Kähler

class”, or polarisation. These necessary conditions are based on the classical results

of Bishop and Lichnerowicz, that bound the volume and the smallest eigenvalue of

the Laplacian on Einstien manifolds, respectively. The key point that allows us to

use these as obstructions is that, in both cases, fixing a putative Reeb vector field

ξ for the Sasaki–Einstein metric is sufficient to determine both the volume and the

“holomorphic” eigenvalues using only the holomorphic data of X. Note that any such
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vector field ξ must also be a critical point of the Sasakian–Einstein–Hilbert action of

[13, 9], which in Kähler–Einstein terms means that the transverse Futaki invariant is

zero. We emphasize, however, that the possible obstructions presented here may be

analysed independently of this, the weighted projective spaces at the end of section 5

being examples that are obstructed by more than one obstruction.

To demonstrate the utility of these criteria, we have provided many explicit exam-

ples of Gorenstein singularities that do not admit Sasaki–Einstein metrics on their

links, for a particular choice of Reeb vector field. The examples include various quasi–

homogeneous hypersurface singularities, previously studied in the physics literature,

that have been erroneously assumed to admit such Ricci–flat Kähler cone metrics.

We expect that in the particular case that the singularity is toric, neither Lichnerow-

icz nor Bishop’s bound will obstruct for the critical Reeb vector field b∗ of [13]. This

is certainly true for all cases that have been analysed in the literature. In this case

both bounds reduce to simple geometrical statements on the polyhedral cone C∗ and

its associated semi–group SC = C∗ ∩ Zn. For instance, given the critical Reeb vector

field b∗, the Lichnerowicz bound implies that (b∗,m) ≥ 1 for all m ∈ SC. It would be

interesting to try to prove that this automatically follows from the extremal problem

in [13], for any toric Gorenstein singularity.

We have also explained the relevance of these bounds to the AdS/CFT correspon-

dence. We have shown that the Lichnerowicz bound is equivalent to the unitarity

bound on the scaling dimensions of BPS chiral operators of the dual field theories. In

particular, we analysed a class of obstructed 3–fold singularities, parameterised by a

positive integer k, for which, in the case that k is even, the field theory dual is known

and has been extensively studied in the literature. The fact that the links Lk do not

admit Sasaki–Einstein metrics for any k > 3 supports the field theory arguments of

[48]. It would be interesting to know whether a Sasaki–Einstein metric exists on L3; if

it does exist, it might be dual to an exotic type of field theory since the corresponding

Calabi–Yau cone does not admit a crepant resolution. For the 4–folds studied in [20],

it will be interesting to analyse the implications of our results for the field theories.
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A Cohomogeneity one metrics

Here we discuss the equations that need to be solved to obtain a Kähler–Einstein

orbifold metric on the Fano orbifold Vk of section 4, which recall is a hypersurface

F = z2
1 + z2

2 + z2
3 + zk

4 = 0 in the weighted projective space WCP
3
[k,k,k,2]. The group

SO(3) acts on zi, i = 1, 2, 3, in the vector representation, and then Matsushima’s

theorem [7] implies that this acts isometrically on any Kähler–Einstein metric. The

generic orbit is three–dimensional, and hence these metrics are cohomogeneity one.

The Kähler–Einstein condition then reduces to a set of ordinary differential equations

in a rather standard way.

The ODEs for a local Kähler–Einstein 4–metric with cohomogeneity one SU(2) ac-

tion have been written down in [45]. The metric may be written as

ds2 = dt2 + a2(t)σ2
1 + b2(t)σ2

2 + c2(t)σ2
3 (A.1)

where σi, i = 1, 2, 3, are (locally) left–invariant one–forms on SU(2), and t is a coordi-

nate transverse to the principal orbit. The ODEs are then [45]

ȧ

a
= − 1

2abc
(b2 + c2 − a2)

ḃ

b
= − 1

2abc
(a2 + c2 − b2)

ċ

c
= − 1

2abc
(a2 + b2 − c2) + Λ

ab

c
(A.2)

where Λ is the Einstein constant, which is Λ = 6 in the normalisation relevant for

Sasaki–Einstein metrics on Lk.

The key question, given these local equations, is what the boundary conditions are.

For a complete metric on Vk, the parameter t must take values in a finite interval, which

without loss of generality we may take to be [0, t∗] for some t∗. At the endpoints, the

principal orbit collapses smoothly (in an orbifold sense) to a special orbit. It is not

difficult to work out the details for Vk, given its embedding in WCP
3
[k,k,k,2]. One must

separate k = 2p even and k odd.
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For k odd, the principal orbit is SO(3)/Z2. This collapses to the two special orbits

Bt=0 = (SO(3)/Z2) /U(1)1 = RP
2

Bt=t∗ = (SO(3)/Z2) /U(1)3 = CP
1 (A.3)

where the circle subgroups U(1)1, U(1)3 ⊂ SO(3) are rotations about the planes trans-

verse to the 1–axis and the 3–axis, respectively, thinking of SO(3) acting on R3 in the

usual way. Thus the two U(1) subgroups are related by a conjugation.

For k = 2p even, the principal orbit is instead simply SO(3) = RP
3. The two special

orbits are

Bt=0 = SO(3)/U(1)1 = S2

Bt=t∗ = SO(3)/U(1)3 = CP
1 . (A.4)

Of course, these are diffeomorphic, but the notation indicates that the second orbit is

embedded as a complex curve in V2p, whereas S2 is embedded as a real submanifold of

V2p.

In both bases, with k odd or k = 2p even, the bolts are the real section of Vk, and

the subvariety z4 = 0, respectively. The latter is the image of the conic in CP
2 ⊂

WCP
3
[k,k,k,2] at z4 = 0, and is a locus of orbifold singularities. This is the only singular

set on Vk.

The boundary conditions at t = 0 are then, in all cases,

a(t) = β + O(t)

b(t) = β + O(t)

c(t) =
2

k
t+ O(t2) (A.5)

where

β2 =
k + 2

6k
. (A.6)

At t = t∗, one simply requires that a collapses to zero a(t∗) = 0, with b(t∗) = c(t∗)

positive and finite. The metric functions should remain strictly positive on the open

interval (0, t∗).

The system of first order ODEs (A.2) may be reduced to a single second order ODE

as follows. The change of variables dr/dt = 1/c allows one to find the integral

a

b
(r) = − coth(r) (A.7)
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where an integration constant can be reabsorbed by a shift of r. Defining f(r) = ab,

one obtains
d

dr
log

(

f
df

dr

)

= 2 [Λf + coth(2r)] . (A.8)

Any solution of this equation gives rise to a solution of (A.2), using the fact that

c2 = −df

dr
. (A.9)

For k = 1, k = 2, one can write down explicit solutions to these equations and boundary

conditions, corresponding to the standard metrics on CP
2 and CP

1×CP
1, respectively.

For k = 1 we have

a(t) = cos
(

t+
π

4

)

, b(t) = sin
(

t+
π

4

)

, c(t) = sin(2t) (A.10)

where the range of t is 0 ≤ t ≤ π/4. Correspondingly,

f(r) = −1

2
tanh(2r) (A.11)

with tan(t) = exp (2r), so that −∞ ≤ r ≤ 0.

For k = 2 we instead have

a(t) =
1√
3

cos(
√

3t), b(t) =
1√
3
, c(t) =

1√
3

sin(
√

3t) (A.12)

where the range of t is 0 ≤ t ≤ π/(2
√

3). Correspondingly,

f(r) = −1

3
tanh(r) (A.13)

with tan(
√

3t/2) = exp (r) and −∞ ≤ r ≤ 0.

For all k > 3, this paper implies that there do not exist any solutions. This still

leaves the case k = 3. We have neither been able to integrate the equations explicitly,

nor have our preliminary numerical investigations been conclusive. We leave the issue

of existence of this solution open.
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