46 research outputs found

    Augmenting Information Propagation Models with Graph Neural Networks

    Get PDF
    Department of Computer Science and EngineeringConventional epidemic models are limited in their ability to capture the dynamics of real world epidemics in a sense that they either place restrictions on the models such as their topology and contact process for mathematical tractability, or focus only on the average global behavior, which lacks details for further analysis. We propose a novel modeling approach that augments the conventional epidemic models using Graph Neural Networks to improve their expressive power while preserving the useful mathematical structures. Simulation results show that our proposed model can predict spread times in both node-level and network-wide perspectives with high accuracy having median relative errors below 15% for a wide range of scenarios.ope

    Contrastive Vicinal Space for Unsupervised Domain Adaptation

    Full text link
    Recent unsupervised domain adaptation methods have utilized vicinal space between the source and target domains. However, the equilibrium collapse of labels, a problem where the source labels are dominant over the target labels in the predictions of vicinal instances, has never been addressed. In this paper, we propose an instance-wise minimax strategy that minimizes the entropy of high uncertainty instances in the vicinal space to tackle the stated problem. We divide the vicinal space into two subspaces through the solution of the minimax problem: contrastive space and consensus space. In the contrastive space, inter-domain discrepancy is mitigated by constraining instances to have contrastive views and labels, and the consensus space reduces the confusion between intra-domain categories. The effectiveness of our method is demonstrated on public benchmarks, including Office-31, Office-Home, and VisDA-C, achieving state-of-the-art performances. We further show that our method outperforms the current state-of-the-art methods on PACS, which indicates that our instance-wise approach works well for multi-source domain adaptation as well. Code is available at https://github.com/NaJaeMin92/CoVi.Comment: 10 pages, 7 figures, 5 table

    Self-Supervised Visual Learning by Variable Playback Speeds Prediction of a Video

    Full text link
    We propose a self-supervised visual learning method by predicting the variable playback speeds of a video. Without semantic labels, we learn the spatio-temporal visual representation of the video by leveraging the variations in the visual appearance according to different playback speeds under the assumption of temporal coherence. To learn the spatio-temporal visual variations in the entire video, we have not only predicted a single playback speed but also generated clips of various playback speeds and directions with randomized starting points. Hence the visual representation can be successfully learned from the meta information (playback speeds and directions) of the video. We also propose a new layer dependable temporal group normalization method that can be applied to 3D convolutional networks to improve the representation learning performance where we divide the temporal features into several groups and normalize each one using the different corresponding parameters. We validate the effectiveness of our method by fine-tuning it to the action recognition and video retrieval tasks on UCF-101 and HMDB-51.Comment: Accepted by IEEE Access on May 19, 202

    Switching Temporary Teachers for Semi-Supervised Semantic Segmentation

    Full text link
    The teacher-student framework, prevalent in semi-supervised semantic segmentation, mainly employs the exponential moving average (EMA) to update a single teacher's weights based on the student's. However, EMA updates raise a problem in that the weights of the teacher and student are getting coupled, causing a potential performance bottleneck. Furthermore, this problem may become more severe when training with more complicated labels such as segmentation masks but with few annotated data. This paper introduces Dual Teacher, a simple yet effective approach that employs dual temporary teachers aiming to alleviate the coupling problem for the student. The temporary teachers work in shifts and are progressively improved, so consistently prevent the teacher and student from becoming excessively close. Specifically, the temporary teachers periodically take turns generating pseudo-labels to train a student model and maintain the distinct characteristics of the student model for each epoch. Consequently, Dual Teacher achieves competitive performance on the PASCAL VOC, Cityscapes, and ADE20K benchmarks with remarkably shorter training times than state-of-the-art methods. Moreover, we demonstrate that our approach is model-agnostic and compatible with both CNN- and Transformer-based models. Code is available at \url{https://github.com/naver-ai/dual-teacher}.Comment: NeurIPS-202

    BackTrack: Robust template update via Backward Tracking of candidate template

    Full text link
    Variations of target appearance such as deformations, illumination variance, occlusion, etc., are the major challenges of visual object tracking that negatively impact the performance of a tracker. An effective method to tackle these challenges is template update, which updates the template to reflect the change of appearance in the target object during tracking. However, with template updates, inadequate quality of new templates or inappropriate timing of updates may induce a model drift problem, which severely degrades the tracking performance. Here, we propose BackTrack, a robust and reliable method to quantify the confidence of the candidate template by backward tracking it on the past frames. Based on the confidence score of candidates from BackTrack, we can update the template with a reliable candidate at the right time while rejecting unreliable candidates. BackTrack is a generic template update scheme and is applicable to any template-based trackers. Extensive experiments on various tracking benchmarks verify the effectiveness of BackTrack over existing template update algorithms, as it achieves SOTA performance on various tracking benchmarks.Comment: 14 pages, 7 figure

    Robust Discriminative Metric Learning for Image Representation

    Get PDF
    Metric learning has attracted significant attentions in the past decades, for the appealing advances in various realworld applications such as person re-identification and face recognition. Traditional supervised metric learning attempts to seek a discriminative metric, which could minimize the pairwise distance of within-class data samples, while maximizing the pairwise distance of data samples from various classes. However, it is still a challenge to build a robust and discriminative metric, especially for corrupted data in the real-world application. In this paper, we propose a Robust Discriminative Metric Learning algorithm (RDML) via fast low-rank representation and denoising strategy. To be specific, the metric learning problem is guided by a discriminative regularization by incorporating the pair-wise or class-wise information. Moreover, low-rank basis learning is jointly optimized with the metric to better uncover the global data structure and remove noise. Furthermore, fast low-rank representation is implemented to mitigate the computational burden and make sure the scalability on large-scale datasets. Finally, we evaluate our learned metric on several challenging tasks, e.g., face recognition/verification, object recognition, and image clustering. The experimental results verify the effectiveness of the proposed algorithm by comparing to many metric learning algorithms, even deep learning ones
    corecore