81 research outputs found

    Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8(+) T cells

    Get PDF
    Depletion of immune elements before adoptive cell transfer (ACT) can dramatically improve the antitumor efficacy of transferred CD8(+) T cells, but the specific mechanisms that contribute to this enhanced immunity remain poorly defined. Elimination of CD4(+)CD25(+) regulatory T (T reg) cells has been proposed as a key mechanism by which lymphodepletion augments ACT-based immunotherapy. We found that even in the genetic absence of T reg cells, a nonmyeloablative regimen substantially augmented CD8(+) T cell reactivity to self-tissue and tumor. Surprisingly, enhanced antitumor efficacy and autoimmunity was caused by increased function rather than increased numbers of tumor-reactive T cells, as would be expected by homeostatic mechanisms. The γ (C) cytokines IL-7 and IL-15 were required for augmenting T cell functionality and antitumor activity. Removal of γ (C) cytokine–responsive endogenous cells using antibody or genetic means resulted in the enhanced antitumor responses similar to those seen after nonmyeloablative conditioning. These data indicate that lymphodepletion removes endogenous cellular elements that act as sinks for cytokines that are capable of augmenting the activity of self/tumor-reactive CD8(+) T cells. Thus, the restricted availability of homeostatic cytokines can be a contributing factor to peripheral tolerance, as well as a limiting resource for the effectiveness of tumor-specific T cells

    Selection of a core set of RILs from Forrest × Williams 82 to develop a framework map in soybean

    Get PDF
    Soybean BAC-based physical maps provide a useful platform for gene and QTL map-based cloning, EST mapping, marker development, genome sequencing, and comparative genomic research. Soybean physical maps for “Forrest” and “Williams 82” representing the southern and northern US soybean germplasm base, respectively, have been constructed with different fingerprinting methods. These physical maps are complementary for coverage of gaps on the 20 soybean linkage groups. More than 5,000 genetic markers have been anchored onto the Williams 82 physical map, but only a limited number of markers have been anchored to the Forrest physical map. A mapping population of Forrest × Williams 82 made up of 1,025 F8 recombinant inbred lines (RILs) was used to construct a reference genetic map. A framework map with almost 1,000 genetic markers was constructed using a core set of these RILs. The core set of the population was evaluated with the theoretical population using equality, symmetry and representativeness tests. A high-resolution genetic map will allow integration and utilization of the physical maps to target QTL regions of interest, and to place a larger number of markers into a map in a more efficient way using a core set of RILs

    Integrating teamwork, clinician occupational well-being and patient safety – development of a conceptual framework based on a systematic review

    Full text link

    Polyadenylation of Vesicular Stomatitis Virus mRNA Dictates Efficient Transcription Termination at the Intercistronic Gene Junctions

    Get PDF
    The intercistronic gene junctions of vesicular stomatitis virus (VSV) contain conserved sequence elements that are important for polyadenylation and transcription termination of upstream transcript as well as reinitiation of transcription of downstream transcript. To examine the role of the putative polyadenylation signal 3′AUACU(7)5′ at the gene junctions in polyadenylation and transcription termination, we constructed plasmids encoding antigenomic minireplicons containing one or two transcription units. In plasmid-transfected cells, analyses of the bicistronic minireplicon containing the wild-type or mutant intercistronic gene junctions for the ability to direct synthesis of polyadenylated upstream, downstream, and readthrough mRNAs showed that the AUACU(7) sequence element is required for polyadenylation of VSV mRNA. Deletion of AUAC or U(7) resulted in templates that did not support polyadenylation of upstream mRNA. Interestingly, we found that the loss of polyadenylation function led to antitermination of the upstream transcript and resulted in a readthrough transcript that contained the upstream and downstream mRNA sequences. Mutations that blocked polyadenylation also blocked transcription termination and generated mostly readthrough transcript. Reverse transcription-PCR of readthrough transcripts and subsequent nucleotide sequencing of the amplified product revealed no extra adenosine residues at the junction of the readthrough transcript. These results indicate that polyadenylation is required for transcription termination of VSV mRNA. The intergenic dinucleotide GA did not appear to be necessary for transcription termination. Furthermore, we found that insertion of the polyadenylation signal sequence AUACU(7) alone was sufficient to direct polyadenylation and efficient transcription termination at the inserted site. Taken together, the data presented here support the conclusion that polyadenylation is the major determinant of transcription termination at the intercistronic gene junctions of VSV

    Optimal Replication Activity of Vesicular Stomatitis Virus RNA Polymerase Requires Phosphorylation of a Residue(s) at Carboxy-Terminal Domain II of Its Accessory Subunit, Phosphoprotein P

    Get PDF
    The phosphoprotein, P, of vesicular stomatitis virus (VSV) is a key subunit of the viral RNA-dependent RNA polymerase complex. The protein is phosphorylated at multiple sites in two different domains. We recently showed that specific serine and threonine residues within the amino-terminal acidic domain I of P protein must be phosphorylated for in vivo transcription activity, but not for replication activity, of the polymerase complex. To examine the role of phosphorylation of the carboxy-terminal domain II residues of the P protein in transcription and replication, we have used a panel of mutant P proteins in which the phosphate acceptor sites (Ser-226, Ser-227, and Ser-233) were altered to alanines either individually or in various combinations. Analyses of the mutant proteins for their ability to support replication of a VSV minigenomic RNA suggest that phosphorylation of either Ser-226 or Ser-227 is necessary for optimal replication activity of the protein. The mutant protein (P(226/227)) in which both of these residues were altered to alanines was only about 8% active in replication compared to the wild-type (wt) protein. Substitution of alanine for Ser-233 did not have any adverse effect on replication activity of the protein. In contrast, all the mutant proteins showed activities similar to that of the wt protein in transcription. These results indicate that phosphorylation of the carboxy-terminal domain II residues of P protein are required for optimal replication activity but not for transcription activity. Furthermore, substitution of glutamic acid residues for Ser-226 and Ser-227 resulted in a protein that was only 14% active in replication but almost fully active in transcription. Taken together, these results, along with our earlier studies, suggest that phosphorylation of residues at two different domains in the P protein regulates its activity in transcription and replication of the VSV genome

    The effect of maternal SARS-CoV-2 infection timing on birth outcomes: a retrospective multicentre cohort study.

    No full text
    BACKGROUND: The impact of maternal SARS-CoV-2 infection remains unclear. In this study, we evaluated the risk of maternal SARS-CoV-2 infection on birth outcomes and how this is modulated by the pregnancy trimester in which the infection occurs. We also developed models to predict gestational age at delivery for people following a SARS-CoV-2 infection during pregnancy. METHODS: We did a retrospective cohort study of the impact of maternal SARS-CoV-2 infection on birth outcomes. We used clinical data from Providence St Joseph Health electronic health records for pregnant people who delivered in the USA at the Providence, Swedish, or Kadlec sites in Alaska, California, Montana, Oregon, or Washington. The SARS-CoV-2 positive cohort included people who had a positive SARS-CoV-2 PCR-based test during pregnancy, subdivided by trimester of infection. No one in this cohort had been vaccinated for COVID-19 at time of infection. The SARS-CoV-2 negative cohort were people with at least one negative SARS-CoV-2 PCR-based test and no positive tests during pregnancy. Cohorts were matched on common covariates impacting birth outcomes, and univariate and multivariate analysis were done to investigate risk factors and predict outcomes. The primary outcome was gestational age at delivery with annotation of preterm birth classification. We trained multiple supervised learning models on 24 features of the SARS-CoV-2 positive cohort to evaluate performance and feature importance for each model and discuss the impact of SARS-CoV-2 infection on gestational age at delivery. FINDINGS: Between March 5, 2020, and July 4, 2021, 73 666 pregnant people delivered, 18 335 of whom had at least one SARS-CoV-2 test during pregnancy before Feb 14, 2021. We observed 882 people infected with SARS-CoV-2 during their pregnancy (first trimester n=85; second trimester n=226; and third trimester n=571) and 19 769 people who have never tested positive for SARS-CoV-2 and received at least one negative SARS-CoV-2 test during their pregnancy. SARS-CoV-2 infection indicated an increased risk of preterm delivery (p INTERPRETATION: These results suggest that pregnant people would benefit from increased monitoring and enhanced prenatal care after first or second trimester SARS-CoV-2 infection, regardless of acute COVID-19 severity. FUNDING: US National Institutes of Health

    The effect of COVID-19 vaccination and booster on maternal-fetal outcomes: a retrospective multicenter cohort study.

    No full text
    Background: COVID-19 infection in pregnant people has previously been shown to increase the risk for poor maternal-fetal outcomes. Despite this, there has been a lag in COVID-19 vaccination in pregnant people due to concerns over the potential effects of the vaccine on maternal-fetal outcomes. Here we examine the impact of COVID-19 vaccination and booster on maternal COVID-19 breakthrough infections and birth outcomes. Methods: This was a retrospective multicenter cohort study on the impact of COVID-19 vaccination on maternal-fetal outcomes for people that delivered (n=86,833) at Providence St. Joseph Health across Alaska, California, Montana, Oregon, New Mexico, Texas, and Washington from January 26, 2021 through July 11, 2022. Cohorts were defined by vaccination status at time of delivery: unvaccinated (n=48,492), unvaccinated propensity score matched (n=26,790), vaccinated (n=26,792; two doses of mRNA-1273 Moderna or BNT162b2 Pfizer-BioNTech), and/or boosted (n=7,616). The primary outcome was maternal COVID-19 infection. COVID-19 vaccination status at delivery, COVID-19 infection-related health care, preterm birth (PTB), stillbirth, very low birth weight (VLBW), and small for gestational age (SGA) were evaluated as secondary outcomes. Findings: Vaccinated pregnant people were significantly less likely to have a maternal COVID-19 infection than unvaccinated matched (p1,500 g; 0.31). Vaccinated people who were boosted had significantly lower rates of maternal COVID-19 infections (p Interpretation: COVID-19 vaccination protects against adverse maternal-fetal outcomes with booster doses conferring additional protection against COVID-19 infection. It is therefore important for pregnant people to have high priority status for vaccination, and for them to stay current with their COVID-19 vaccination schedule. Funding: This study was funded by the National Institute for Child Health & Human Development and the William O. and K. Carole Ellison Foundation

    Effect of COVID-19 vaccination and booster on maternal-fetal outcomes: a retrospective cohort study.

    No full text
    BACKGROUND: COVID-19 in pregnant people increases the risk for poor maternal-fetal outcomes. However, COVID-19 vaccination hesitancy remains due to concerns over the vaccine\u27s potential effects on maternal-fetal outcomes. Here we examine the impact of COVID-19 vaccination and boosters on maternal SARS-CoV-2 infections and birth outcomes. METHODS: This was a retrospective multicentre cohort study on the impact of COVID-19 vaccination on maternal-fetal outcomes for people who delivered (n=106 428) at Providence St Joseph Health across seven western US states from Jan 26, 2021 to Oct 26, 2022. Cohorts were defined by vaccination status at delivery: vaccinated (n=35 926; two or more doses of mRNA-1273 Moderna or BNT162b2 Pfizer-BioNTech), unvaccinated (n=55 878), unvaccinated propensity score matched (n=16 771), boosted (n=10 927; three or more doses), vaccinated unboosted (n=13 243; two doses only), and vaccinated unboosted with propensity score matching (n=4414). We built supervised machine learning classification models, which we used to determine which people were more likely to be vaccinated or boosted at delivery. The primary outcome was maternal SARS-CoV-2 infection. COVID-19 vaccination status at delivery, COVID-19-related health care, preterm birth, stillbirth, and very low birthweight were evaluated as secondary outcomes. FINDINGS: Vaccinated people were more likely to conceive later in the pandemic, have commercial insurance, be older, live in areas with lower household composition vulnerability, and have a higher BMI than unvaccinated people. Boosted people were more likely to have more days since receiving the second COVID-19 vaccine dose, conceive earlier in the pandemic, have commercial insurance, be older, and live in areas with lower household composition vulnerability than vaccinated unboosted people. Vaccinated pregnant people had lower rates of COVID-19 during pregnancy (4·0%) compared with unvaccinated matched people (5·3%; p INTERPRETATION: COVID-19 vaccination protects against adverse maternal-fetal outcomes, with booster doses conferring additional protection. Pregnant people should be high priority for vaccination and stay up to date with their COVID-19 vaccination schedule. FUNDING: National Institute for Child Health & Human Development and the William O and K Carole Ellison Foundation
    corecore