38,440 research outputs found

    Carrier transport in 2D graphene layers

    Full text link
    Carrier transport in gated 2D graphene monolayers is theoretically considered in the presence of scattering by random charged impurity centers with density nin_i. Excellent quantitative agreement is obtained (for carrier density n>1012cm−2n > 10^{12} \rm{cm}^{-2}) with existing experimental data (Ref. \onlinecite{kn:novoselov2004, kn:novoselov2005, kn:zhang2005, kn:kim2006, kn:fuhrer2006}). The conductivity scales linearly with n/nin/n_i in the theory, and shows extremely weak temperature dependence. The experimentally observed asymmetry between electron and hole conductivities is explained by the asymmetry in the charged impurity configuration in the presence of the gate voltage, while the high-density saturation of conductivity for the highest mobility samples is explained as a crossover between the long-range and the point scattering dominated regimes. We argue that the experimentally observed saturation of conductivity at low density arises from the charged impurity induced inhomogeneity in the graphene carrier density which becomes severe for n≲ni∼1012cm−2n \lesssim n_i \sim 10^{12} \rm{cm}^{-2}.Comment: 5 pages, 4 figures, published in Phys. Rev. Let

    Cosmological Vorticity in a Gravity with Quadratic Order Curvature Couplings

    Get PDF
    We analyse the evolution of the rotational type cosmological perturbation in a gravity with general quadratic order gravitational coupling terms. The result is expressed independently of the generalized nature of the gravity theory, and is simply interpreted as a conservation of the angular momentum.Comment: 5 pages, revtex, no figure

    Second-order Perturbations of the Friedmann World Model

    Full text link
    We consider instability of the Friedmann world model to the second-order in perturbations. We present the perturbed set of equations up to the second-order in the Friedmann background world model with general spatial curvature and the cosmological constant. We consider systems with the completely general imperfect fluids, the minimally coupled scalar fields, the electro-magnetic field, and the generalized gravity theories. We also present the case of null geodesic equations, and the one based on the relativistic Boltzmann equation. In due stage a decomposition is made for the scalar-, vector- and tensor-type perturbations which couple each other to the second-order. Gauge issue is resolved to each order. The basic equations are presented without imposing any gauge condition, thus in a gauge-ready form so that we can use the full advantage of having the gauge freedom in analysing the problems. As an application we show that to the second-order in perturbation the relativistic pressureless ideal fluid of the scalar-type reproduces exactly the known Newtonian result. As another application we rederive the large-scale conserved quantities (of the pure scalar- and tensor-perturbations) to the second order, first shown by Salopek and Bond, now from the exact equations. Several other applications are made as well.Comment: 61 pages; published version in Phys. Rev.

    Cosmological perturbations in a generalized gravity including tachyonic condensation

    Full text link
    We present unified ways of handling the cosmological perturbations in a class of gravity theory covered by a general action in eq. (1). This gravity includes our previous generalized f(Ï•,R)f(\phi,R) gravity and the gravity theory motivated by the tachyonic condensation. We present general prescription to derive the power spectra generated from vacuum quantum fluctuations in the slow-roll inflation era. An application is made to a slow-roll inflation based on the tachyonic condensation with an exponential potential.Comment: 5 page

    Synchronization of the ERDA-NASA 100 LkW wind turbine generator with large utility networks

    Get PDF
    The synchronizing of a wind turbine generator against an infinite bus under random conditions is studied. With a digital computer, complete solutions for rotor speed, generator power angle, electromagnetic torque, wind turbine torque, wind turbine blade pitch angle, and armature current are obtained and presented by graphs

    Transient analysis of unbalanced short circuits of the ERDA-NASA 100 kW wind turbine alternator

    Get PDF
    Unbalanced short-circuit faults on the alternator of the ERDA-NASA Mod-O100-kW experimental wind turbine are studied. For each case, complete solutions for armature, field, and damper-circuit currents; short-circuit torque; and open-phase voltage are derived directly by a mathematical analysis. Formulated results are tabulated. For the Mod-O wind turbine alternator, numerical calculations are given, and results are presented by graphs. Comparisons for significant points among the more important cases are summarized. For these cases the transients are found to be potentially severe. The effect of the alternator neutral-to-ground impedance is evaluated
    • …
    corecore