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TRANSIENT ANALYSIS OF UNBALANCED SHORT CIRCUITS OF THE

ERDA-NASA 100 kW WIND TURBINE ALTERNATOR

by H. H. Hwang
University of Hawaii
Honolulu, Hawaii 96822

and Leonard J. Gilbert
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

Four different types of unbalanced short-circuit faults on the alter-
nator of the ERDA/NASA Mod-0 100-kW experimental wind turbine are studied.
For each case, complete solutions for armature, field, and damper-circuit
currents, short-circuit torque, and open-phase voltage are derived di-
rectly by a mathematical analysis. Formulated results are tabulated in
appendixes II and Ill. For the I'ltod-0 wind turbine alternator, numerical

	

N	 calculations are given, and results are presented by graptis. Comparisons

	

ro	 for significant points among the more important cases are summarized.

	

I 	 For these cases the transients are found to be potentially severe. The
effect of the alternator neutral-to-ground impedance is evaluated.

INTRODUCTION

In 1974-75 NASA-Lewis Research Center designed and erected an exper-
imental 100 kW wind turbine as part of the ERDA wind energy program.
This turbine, designated the Mod-0, is located at the NASA Plum Brook
site near Sandusky, Ohio. The machine, which became operational in
September 1975, is a horizontal-axis, propeller-type wind turbine driving
a 100 kW synchronous alternator through a step-up gear box.

The NASA Mod-O alternator is a 125 kVA, three-phase, 60-Hz, 1800 rpm,
480-volt, Y-connected synchronous generator. The complete wind turbine
system including the alternator has been described in previous publica-
tions (refs. 1 and 2). Figure 1 depicts the Mod-0 wind turbine. Fig-
ure 2 shows schematic details of the drive train assembly. Figure 3 is
a schematic diagram of the alternator.

Short-circuit analyses provide currents, voltage, and torque on a
power system during electrical fault conditions. This information is re-
quired for analyzing the transient stability of a system under faults.
The information is essential to deigning an adequate protective relaying
system and to determining interrupting requirements for circuit breakers
used in the wind turbine generator system. Relaying systems must recog-
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nize the existence of a fault and initiate circuit breaker operation to
'!ear the fault in time to avoid any serious consequences.

Statistically most of the faults that occur on power systems are
unsymmetrical faults. This report presents a mathematical analysis of

four possible cases of unsymmetrical faults; namely, simultaneous unbal-

anced, line-to-line, line-to-ground, and double line-to-ground faults.
The most significant results are presented and provide a complete solu-
tion to the important problem of unsymmetrical short circuits of the Mod-0
wind turbine alternator. Appendix A presents the nomenclature used in

this report. The analytical formulas given in appendixes B and C can be
used for analyzing the proposed Mod-1 wind turbine alternator as well 3s
other wind turbine alternators. The resulting information can contribute
to designing an effective relaying, switching, and control system for the
proposed Mod-1 wind turbine generators. A digital computer program for

numerical computations of the analytical formulas has been developed.

The purpose of the work reported here is to estimate the effects of
these electrical faults on the wind turbine generator, to evaluate the

system design, and to recommend, if warranted, any system improvements to

reduce the transients caused by the faults.

Two basic assumptions are made in deriling the relationships pre-

sented in this report. These are assumptions recognizing conditions con-
ventionally accepted for similar fault analyses:

(1) Alternator speed remains constant.
(2) Field regulation is not active.

The first assumption recognizes that the alternator is synchronized to a
large power syster.:; the second assumption recognizes that the fault
transient is much faster than the field circuit reaction.

MATHEMATICAL ANALYSIS

Performance Equations of Alternators

In this report, modified Clarke's components, a, S, y components
(ref. 3), are used to analyze the unsymmetrical short-circuit conditions.

The transformation from phase quantities to a, p , y components is given
by

f2 3	 - -1	 - 1	 f
a	 ,,6 36	 a

f = 0	 -1	 1 fQ	 ^	 b

f	 1	 1	 1	 f
y	 vrT	 33	 vr3- L c

(1)

I
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or conversely,	

r
1 f

	

/2-7-3	 0	 1 f
a r

	I _ _ 1	 _ 1	 1	
f	 (2)

^b	
/6--	 r	

1

t	 - 1	 2	 1	 f

/'T_L Y

where f may represent i, e, or 1y1 the current, voltage, or flux link-

age, respectively. (All basic system parameters are completely defined
in appendi.x A. Other symbols are defined in the text.)

In terms of a, S, y components, the following performance equa-
tions can be verified when necessary (ref. 4):

-e f 	-Lff	 -Maf cos A	 Mgf sin G	 0	
-Mfld	 0

e a 	-Maf cos 0 -A -B cos 29	 B sin 28	 0	
-Mald 

cos 0 
-Mald 

sin ti

e B 	Ma  sin 0	 B sin 26	 -A +B cos 20 0	
Mald 

sin 0	 -Mal 
9 

cos d

p

e } 	0	 0	 0	 -LO	 0	 0

0-il
fld 	 -Mald cos 8
	 Mald sin 0	 0	 -Llld	 0

_.0	 0	 -Mal sin 0	 -Mal cos 0	 0	 0	
-Lllq	 q	 q

R 
f 
i 

f

R i
a a

Raiff

(3)

R i
a Y

RIdilld

Rlqillq

if

i
u

i
U

i
Y

111.

111.



V

4

L
M

0
0
G

X
•
v
 
u

1•+
N

 ^
 O

 O
N

Ln
ro

—
c
n
 v

m
E

cn	
v
	

&W	7
G
 
G
 
"
	

O
6
1

O
	
O
	

►
+
 
w
 

-
1

•
 
4
	

•-r 	
O
	

• -
4
	
>

a.r
a.^	

u
	

u
 ,^
	

0!
ro

 ro
	

u
 ..C]

o
•

o
•	.
L
 
G

o
.+

cn
0
0
 0

0
 00

.0
G

 G
 G

 v
 b

o
•-, •.• I

 -4
	

u
	

v
u

y
 
>

,
 
"
 
u

 .+

v
1

]. •.a 	
E	

v
--I

>
, G

. u
	

7
 U

f
.n

.o
 r

o
	

G
	

ry
•^

v
 
m
 
^

>
	

w
 •

,4
 a

^
G

 .n
	

al
O

v
	

w
 G

 to
o

l b
 w

 0
H
	

G
 •.•I

 •
,

m
-0
	

4-1 	
G

O
	

7
 
O

:s
•-4

C
L

 V
)

3
G
 
n
 
E
	

>
w
N
	

•-
1	

v
 
•
-
r

vl
>+	

G
	

(n	
C	

$4

0
`
^
b

U
 >

r
i

• 4
U
	

^
n
 w

cn
u

O)	
O

 b
-+

-a
G
	

7
 't7
	

C
!

v
b

C
r v
	

G
 --4

G
14	

w
	

O
 •.+

a
4
 IN

O
G

 O
 ro

 	
ro

U
_
4
 
a
J
	
O
	

+
 
u

x
+

J
v
 r

o
 >

 •
o

n
•.4

>
	

•.4
o

x
 H

 v
 ^

•
 ►+

H
u

•-1 	
v

 ro
fr

to	
v
 b

 --1•4

1
v
	

v
L
	

G
	

•4

u
o

^
, F
	

m
.
a
o
 
w
 
v
 
u
	

{

cn
W

 v
 o

0
 v

 b
+

^
 ro

 b
 v

--I
>

 v
 ♦	

N
M

 
 
v
-
	

C
u

m
	

o
	

v
•,4

v
 
>
	

U)
W

o
	

•
 v

+^
v
	

v
 G

 ^
U3

v
G

 G
(n 	

o
 0

.

u
 u

 .=
 m

 v
G

>
-i 	

0
. y

 ^-
o

n
n	

I	
v

 r
o

•-I
G

E
	

G
	

^+
+^

O
•
^
 G

 v
 
a
 

u,
ro

m
 
v
 
a
 
x

>
,

s.	
0
	

v
	

.
v
'

G
.-.	

tir	
O

 ..
v

0
 v

 v
 

U
) L

n
u
	

0
0

 v
^

L
I

i
J
	

r
o
 

►
.

O
v

U
h v	

aL	
w

a
,

b
G

 m
	

G
 v

 G
l

u
G

o
	

to	
>

, •-+
 s

0
0

• -
I
 -C

 —
4
 --1

 ...-
1
1

4
1
	
a 

•
-
1

ro	
ro

 x
 >

, ,X
u

C
 v

 G
 7

 -• w

H
r
r
	

-
r
4

W
 W

 4
 w

 o
 3
	

1

v
	

a•

w
t^	

m
t
	

-a
	

,-I
•.^

^
_

•'d
	

•.1
•d

•-1
	

«
4

1

r
^
,

m
,
GG

C
mO

0l>
of

u
o

0
0

-
^

-
4

ro
ro

ro
m

t
i

u••• I
V

i
G

.-^
u

u
cn

I
N

•-1
•O

b

v
ro

ro

II
NO

1

W
uro

O
E

O
O

.-1

ro

w

v.0
mN

v
'

u
m

..a
G

N
mO

t
N

-^
G

u
•-

4
O

.-a
0!

11
0
0

ro
W1

I

d
d

Gk^
N

--1
cp

a^
W

(n
N

n
o

"
•.G+

o

a
;n

c
o

m

L
+

P
Q

Cv
^

1

G
v

OaE
m

m
0v

G
ou

•-+^
^

O

w

w
(
u

wI

b

^
^

v

1
^

vLv3

r

-
.
0
-
4



1

5

Specification of Fau-, Conditions

Summary of unbalanced short-circuit cases. -

Case 1: Simultaneous unbalanced short-circuits

'	 As shown in figure 4, a short-circuit is applied between phase a and the
neutral through an impedance Zg, and another short-circuit is applied
simultaneously between phases b and c. For the present case, with the

machine unloaded, the terminal conditions are:

e a 	e bc	 0,	 1b = -i c 	(6)

In terms of the a, 3, y components, these terminal conditions
become

e_ _ - 1 e ,	 e = 0,	 i = ^ i	 (7)
x	

V y
	 t'	 Ct	 v

Case 2: Line-to-line fault on phases b-c, with line A open in figure 4

The corresponding terminal conditions are:

	

is = 0,	 ib = -ic,	 ebc	 0	 (g)

or

	

is = 0,	 ty = 0,	 es = 0	 (9)

Case 3: Line-to-ground fault on phase a, with open-circuit
lines B and C.

The terminal conditions are:

ea = 0,	 1b = is = 0	 (10)

or

ea = - 1 e y ,	 is = 2 3 ia,
2

i^ = 0,	 iy = 1 la

(11)

Case 4: Double line-to-ground fault on phases b and c with line A open.

The terminal conditions are given by:



e  - e c = 0 9 i = 0a (12)

.^W

I

6

or

eu	 eY,	 ea = 0,	 1	 -^ is	 (13)

"rhe analytical formulas given in appendixes B and C can be used to calcu-

late the currents, torque, and open-phase voltage caused by the fault in
each listed case. If the alternator is initially loaded, fault condition
values can be determined simply by adding the initial values existing be-

fore the fault to the results obtained from the given formulas with the

fault condition.

Numerical Calculations

System parameters. -

The 100 kW Mod-0 wind turbine alternator has the following per unit

parameters:

R  = 0.0186 p.u.

R  = 0.00405 p.u.

Rld = 0.0466 p.u.

Rlq = 0.0493 p.u.

R0 = 0.0180 p.u.

Ld - 2.2100 p.u.

L  = 1.0640 p.u.

L0 = 0.0058 p.u.

La = 0.1650 p.u.

Ld - 0.1280 p.u.

Lq = 0.1930 p.u.

Lff = 2.9650 p.u.

Llld = 2.1600 p.u.

Lllq = 1.1600 p.u.

Mfld = 2.1600 p.u.

Maf = 2.1600 p.u.

Mald = 2.1600 p.u.

Malq - 1.0050 p.u.

F  - 1.0000 P.U.

IN = 32 p.u.

w = 377 rad/sec

= 1.0000 p.u.

The impedance between alternator neutral and ground, Z C , has been

tieL to zero.

Experience has shown that 70 to 80 percent of transmission line
faults are single-phase faults and that they are the most severe (ref. 6).
For that reason, numerical. calculations are given for three cases of

short circuit faults; namely,

r
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(1) simultaneous unbalanced

(2) line-to-line
(3' line-to-ground

Field, damper, and armature currents, as well as short circuit torque
and open phase voltages, were calculated using a digital computer program.
The results are shown in figures 5 to 10. Time is measured in radians
with w - 377 rad/sec - 1.0 p.u. A representative value of the phase

angle, 60 = n /3, is assumed in all calculations.

RESULTS AND DISCUSSIONS

Short-Circuit Torques

Figure 5 shows that case 1 seems to be the least severe; it not only
contains the smallest double frequency component, but also has a field

decrement factor, F(t) smaller !han either of the other two cases. The case
of line-to-line short circuit is most severe, as the absolute peak value

of the transient torque is equal to about 21 per unit, This transient
torque occurs at a time equal to 2.9 radians or about 7.7 milliseconds.

As one per unit torque referred to the rotor shaft of the Mod-0 wind tur-
bine is equal to 22 023 foot-pounds, the transient torque amounts to about
460 000 foot-pounds. Furthermore, this transient torque may be even much
higher if the extreme value of 00 is chosen as 7/2 instead of 7/3.
This transient torque reduces gradually, but at the end of the first
three cycles its absolute peak value still remains nearly 6 per unit

or about 130 000 foot-pounds on the rotor shaft.

The transient torque for the line-to-ground case is not much less
than that of the line-to-line case. At steady-state, case 1 has a very

small torque nearly equal to zero, and cases 2 and 3 have a peak torque
less than 0.17 per unit (given by computer results) or about 3700 foot-
pounds on the rotor shaft. For all cases, the output of the alternator

finally reduces to a very small value nearly equal to zero.

Armature Currents

Figure 6 shows that each phase current in case 1 is nearly equa?_ to

the corresponding phase current of cases 2 or 3. The currents in phase a
for cases 1 and 3 reach a maximum value nearly equal to 16 per unit,
but the maximum currents in phase b for cases 1 and 2 are equal to only

about 9 per unit. In ea-h-case,.the transient armature currents contains
a d.c. component. In addition to the odd harmonic series, each of cases
2 and 3 has only the even harmonic cosine series, while both the even

harmonic cosine and sine series appear in each phase current of case 1.
However, all the even harmonic series will decay to zero according to the

armature time constants. The steady-state armature currents for all cases
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are nearly sinusoidal. The above statements. can be verified either by

the results given in figure 6 or by expanding the analytical expressions

for armature currents into Fourier series.

Open-Phase Voltages

Fi-ure 7 shows that all the open-phase voltages contain an appreci-
able amount of harmonics. The case of line-to-ground seems to be most

severe, as its peak voltage is almost five times its rated value 0 per
unit). Such a high voltage would be dangerous to both life and the insu-

lation of the armature winding.

Damper Circuit Currents

Figure 8 shows that the d-axis damper circuit currents for a1J cases

rise to a peak value nearly equal to 13 per unit during the first cycle
after the faults occur. The currents in the q-axis damper circuit
(fig. 9) rise to an absolute maximum valise nearly equal to 6 per unit for
cases 2 and 3. Case 1 has relatively small current in the same circuit.
The transient currents in both damper circuits for each case contain both

even and odd harmonics. However, all the odd harmonics will decay to
zero according to armature time constants, and only the even harmonics

will persist _n the steady-state currents. As the steady-state armature
currents for all cases are nearly sinusoidal, the corresponding damper
circuit currents contain very small even harmonic terms in addition to

the initial d.c. currents. The statements regarding the damper circuit
currents can be easily verified from the results given in figures 8 	 4
and 9, or by expanding the corresponding analytical expressions given in 	 #_
appendix C into Fourier series (ref. 3).

Field Currents

The Mod-0 alternator, similar Lo most practical machines, has a K 
factor equal to zero. Therefore, the direct-axis damper circuit is ef-
fective in preventin@ initially any harmonics in the transient field

current caused by armature circuit changes. This condition is verified
in figure 10. The current induced in the field, for each case, initially

rises exponentially, then decays to a value slightly greater than 1.0 per
unit. Figure 10 also shows that case 1 (simultaneous faults) has a maximum

value of field current greater than that of either case 2 or 3. How-

ever, the peak value is only slightly above 4.0 per unit. This value
will not cause serious damage to the insulation. The rated field current
is equal to about 3.0 per unit.
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Effect of Neutral-to-(;round Impedance

The calculations presented in this report have been made with zero

impedance between Litre jiternator neutral and ground in order to determine

the maximum possible values of the transients.

Standard design practice is to include as a minimum an impedance

equal t o three times the subtrf.nsient reactance between the alternator
neutral and ground in order to limit transients involving circuitry
through the neutral (ref. 7). This minimum value of impedance for the
Mod--O wind turbine (0.38 p.u. or 0.7 ohm) :educes the transients 80 per-

ceiit. The maximum current is reduced from 15.6 p.u. to 3.1 p.u., and

the maximum torque from 17.8 p.u. to 3.8 p.u.

T ►:e line-to-ground transients for current and torque can be limited
to approximately their per unit values (i - 0.94 p.u., torque - 1.2 p.u.)
with the insertion of a 1.5 p.u. (2.8 .'iml impedance. Considering the
acceptable magnitude of the transients And the reasonable size of the

reactance (7.5 mh at 150 amp), the use of a 1.5 p.u. impedance is the

choice for use i,i the Mod-0 wind turbine design.

For any value of impedance used to limit ground transients it is

necessary to fuse ti.- alternator at its terminals. This protection is
necessary since the impedance between alternator neutral and ground does
not limit the transients for the other two cases (line-to-line and
simultaneous faults), and these faults, although not so frequent as line-

to-ground faults, produce electrical transients large enough to be destruc-

tive to equipment. Fusing and circuit breakers must be used as protective
devices for these faults.

SUIVARY OF RESULTS

In this report numerical results are presented for three severe
short-circuit conditions that occur most frequently for an alternator:

(1) Simultaneous unbalanced
(2) Line-to-line, and

(3) line-to-ground

This analvtical study of potential short-circuit characteristics of the
Mod-0 100-kilowatt wind turbine has indicated the following results:

1. The severe electrical transients possible from short-circuit

faults can be effectively reduced by the alternator neutral-to-ground
impedances.

2. Protection of wind turbine system from transients resulting from

line-to-line and simu:ltaneLus faults must be provided by circuit breakers
and fusing at the alternator terminals.
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3. For future wind turbine generator systems, it is recommender
that these cases of short-circuits be analyzed and the effects of N
on the over-all syster, be taken into consideration in designing the

trol and protective s,ibsystems.

Analytical expressions given in appendixes B and C can be reads
modified to suit cases of faults applied at points on transmission
lines at substantial distances from the wind turbine alternator by

impedances external to the alternator in the volt-ampere equations.

arwrs^	 rw^u.:irr^r^r
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APPENDIX A

NOMENCLATURE

Ld ,Lq 	d- and q -axis synchronous inductances

Ld,La	 d- axis transient and subtransient inductances

Lff	 self-inductance of field winding

Lq	 q-axis subtransient inductarrP

LO ,L2	 zero -sequence and negative -sequence inductances

Llld'Lllq	
self -inductances of d- and q -axis damper circuits

M	 reciprocal mutual inductance between d-axis armature circuit

a`	 and field circuit

Mald'Malq	
mutual inductance between d-axis (or q-axis) armature circuit

and d-axis (or q-axis) damper circuit

Mfld	
mutual inductance between field and d-axis damper circuit

Ra ,Rf	 armature resistance per phase and field resistance

R9 ,L9	 resistance and inductance from the neutral to ground

Rld' Rlq	 resistances of d- and q-ax'_s damper circuits

Taa ,Tak^	 armature time constants of a- and B-axis circuits

T',Td	short-circuit transient and subtransient time constants in

d-axis

TdO'TdO	
open-circuit trarsient and subtransient time constants in

d-axi.a



APPENDIX B

EXPRESSIONS FOR PARAMETERS AND TIME CONSTANTS

Parameter Simultaneous Line-to-line Line-to-ground Double	 line-

to-ground

All xd^xq + x2^^ xd xd + T xd(xq + 2z;)

80, + 2 f

/

xq xq + x^l (xd + 2x0)

x6 xdx" +

x
2

x qd y
A"B'	

--Y X 11 + xq 2d

xd(B" - xdx9
x2 x0

xY
+zi,x„ r'ATrB,r

^

x2 + xJ
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Fig. 3. - ERDA-NASA MOD-0 wind turbine alternator
schematic.
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