11 research outputs found

    Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene

    Get PDF
    Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique. Here, we report atomic scale study of heteroepitaxial growth and relationship of a single-atom-thick ZnO layer on graphene using atomic layer deposition. We demonstrate atom-by-atom growth of zinc and oxygen at the preferential zigzag edge of a ZnO monolayer on graphene through in situ observation. We experimentally determine that the thinnest ZnO monolayer has a wide band gap (up to 4.0 eV), due to quantum confinement and graphene-like structure, and high optical transparency. This study can lead to a new class of atomically thin two-dimensional heterostructures of semiconducting oxides formed by highly controlled epitaxial growth.ope

    Computational Study on Sodium Metal Platting on Pre-patterned Current Collector for Highly Rechargeable Seawater Battery

    No full text
    Clean energy resources and storage have received immense attention to address various issues related with global warming and climate change. Li-ion battery has been widely used as the prime clean energy storage. Despite extensive research and development on Li-ion battery technology, tremendous increase in Li metal demand has become another concern. Seawater battery has emerged as a promising energy storage to address this concern owing to the abundance supply of sodium ions. However, dendrite growth during charge-discharge cycles poses a significant challenge on Na battery performance and safety. To mitigate this issue, we presented an in-depth study to determine Na metal growth on the current collector. We used Density Functional Theory (DFT) calculation to elucidate Na plating preference on different metals (i.e., Au, Ag, Cu, Al, and Ni) of the pre-patterned current collector by examining interfacial stability of Na with each metal. Interfacial stability was assessed based on the work of adhesion and binding energy of each interfaces. We found that Cu/Al patterned current collector has decent interfacial stability while keeping the cost minimum

    Cyclic Aminosilane???Based Additive Ensuring Stable Electrode???Electrolyte Interfaces in Li???Ion Batteries

    No full text
    Ni???rich cathodes are considered feasible candidates for high???energy???density Li???ion batteries (LIBs). However, the structural degradation of Ni???rich cathodes on the micro??? and nanoscale leads to severe capacity fading, thereby impeding their practical use in LIBs. Here, it is reported that 3???(trimethylsilyl)???2???oxazolidinone (TMS???ON) as a multifunctional additive promotes the dissociation of LiPF6, prevents the hydrolysis of ion???paired LiPF6 (which produces undesired acidic compounds including HF), and scavenges HF in the electrolyte. Further, the presence of 0.5 wt% TMS???ON helps maintain a stable solid???electrolyte interphase (SEI) at Ni???rich LiNi0.7Co0.15Mn0.15O2 (NCM) cathodes, thus mitigating the irreversible phase transformation from layered to rock???salt structures and enabling the long???term stability of the SEI at the graphite anode with low interfacial resistance. Notably, NCM/graphite full cells with TMS???ON, which exhibit an excellent discharge capacity retention of 80.4%, deliver a discharge capacity of 154.7 mAh g???1 after 400 cycles at 45 ??C

    In Situ Interfacial Tuning to Obtain High-Performance Nickel-Rich Cathodes in Lithium Metal Batteries

    No full text
    Nickel-rich layered oxides are currently considered the most practical candidates for realizing high-energy-density lithium metal batteries (LMBs) because of their relatively high capacities. However, undesired nickel-rich cathode-electrolyte interactions hinder their applicability. Here, we report a satisfactory combination of an antioxidant fluorinated ether solvent and an ionic additive that can form a stable, robust interfacial structure on the nickel-rich cathode in ether-based electrolytes. The fluorinated ether 1,1,2,2-tetrafluoroethyl-1H,1H,5H-octafluoropentyl ether (TFOFE) introduced as a cosolvent into ether-based electrolytes stabilizes the electrolytes against oxidation at the LiNi0.8Mn0.1Co0.1O2 (NCM811) cathode while simultaneously preserving the electrochemical performance of the Li metal anode. Lithium difluoro(bisoxalato)phosphate (LiDFBP) forms a uniform cathode-electrolyte interphase that limits the generation of microcracks inside secondary particles and undesired dissolution of transition metal ions such as nickel, cobalt, and manganese from the cathode into the electrolyte. Using TFOFE and LiDFBP in ether-based electrolytes provides an excellent capacity retention of 94.5% in a Li vertical bar NCM811 cell after 100 cycles and enables the delivery of significantly increased capacity at high charge and discharge rates by manipulating the interfaces of both electrodes. This research provides insights into advancing electrolyte technologies to resolve the interfacial instability of nickel-rich cathodes in LMBs

    The Chemical Stability of Nasicon As a Solid Electrolyte for Seawater Batteries

    No full text
    Seawater batteries have attracted significant attention for use as grid-scale energy storage systems (ESSs) due to the effective utilization of abundant resources of seawater as a catholyte. Sodium ions in seawater selectively transfer through a solid electrolyte to the anode for saving the chemical energy. For the selective transfer of sodium ions, NASICON (Na3Zr2Si2PO12) electrolytes are one of the suitable candidates for the solid electrolyte to prevent a short circuit between the catholyte and anode. However, NASICON powder is known to be dissolved in water because of the structural instability, leading to catastrophic failure of the system, while NASICON solid electrolytes are stable in seawater during the battery operation. In this regard, we have carefully compared the stability of NASICON powder and pellets in both DI water and seawater associated with different degradation mechanism. Figure shows the structural stability of NASICON pellets after the immersion tests in DI water and seawater indicative of the chemical stability of NASICON in seawater. In addition, the electrochemical performance shows higher stability of the seawater-immersed electrolyte than the DI water-immersed electrolyte. The corresponding analyses are carried out to confirm the effect of the investigation. Furthermore, we have employed polymer coating methods to enhance stability and performance as a seawater battery system. The coating layer enables to prevent direct contact with seawater, resulting in longer stability during operation without compromising ionic conductivity. These results reveal that NASICON solid electrolytes can be operated in seawater with high stability and performance

    A Rapid One-Step Fabrication of Patternable Superhydrophobic Surfaces Driven by Marangoni Instability

    No full text
    We present a facile and inexpensive approach without any fluorinated chemistry to create superhydrophobic surface with exceptional liquid repellency, transportation of oil, selective capture of oil, optical bar code, and self-cleaning. Here we show experimentally that the control of evaporation is important and can be used to form superhydrophobic surface driven by Marangoni instability: the method involves in-situ photopolymerization in the presence of a volatile solvent and porous PDMS cover to afford superhydrophobic surfaces with the desired combination of micro- and nanoscale roughness. The porous PDMS cover significantly affects Marangoni convection of coating fluid, inducing composition gradients at the same time. In addition, the change of concentration of ethanol is able to produce versatile surfaces from hydrophilic to superhydrophobic and as a consequence to determine contact angles as well as roughness factors. In conclusion, the control of evaporation under the polymerization provides a convenient parameter to fabricate the superhydrophobic surface, without application of fluorinated chemistry and the elegant nanofabrication technique

    Stable electrode???electrolyte interfaces constructed by fluorine- and nitrogen-donating ionic additives for high-performance lithium metal batteries

    No full text
    The advancement of electrolyte systems has enabled the development of high-performance Li metal batteries (LMBs), which have tackled intractable dendritic Li growth and irreversible Li plating/stripping. In particular, the robust electrode???electrolyte interfaces created by electrolyte additives inhibit the deterioration of the cathode and the Li metal anode during repeated cycles. This paper reports the application of electrode???electrolyte interface modifiers, namely lithium nitrate (LiNO3) and lithium difluoro(bisoxalato) phosphate (LiDFBP) as a N donor and F donor, respectively. LiDFBP and LiNO3 with different electron-accepting abilities construct a mechanically robust, LiF-rich inner solid electrolyte interphase (SEI) and ion-permeable, Li3N-containing outer SEI layers on the Li metal anode, respectively. A well-structured dual-layer SEI capable of transporting Li+ ions is formed on the Li metal anode, while the cathode???electrolyte interface (CEI) on the LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode is strengthened. Ether-based electrolytes containing LiDFBP and LiNO3 lead to a long cycle life (600 cycles) of Li|NCM811 full cells at C/2 with 80.9% capacity retention and a high Coulombic efficiency (CE) of 99.94%. Structural optimization of the SEI and CEI provides an opportunity for advancing the practical uses of LMBs
    corecore