24,806 research outputs found

    Magnetization-controlled spin transport in DyAs/GaAs layers

    Full text link
    Electrical transport properties of DyAs epitaxial layers grown on GaAs have been investigated at various temperatures and magnetic fields up to 12T. The measured longitudinal resistances show two distinct peaks at fields around 0.2 and 2.5T which are believed to be related to the strong spin-disorder scattering occurring at the phase transition boundaries induced by external magnetic field. An empirical magnetic phase diagram is deduced from the temperature dependent experiment, and the anisotropic transport properties are also presented for various magnetic field directions with respect to the current flow.Comment: 3 pages with 3 figure

    Discrete approaches to quantum gravity in four dimensions

    Get PDF
    The construction of a consistent theory of quantum gravity is a problem in theoretical physics that has so far defied all attempts at resolution. One ansatz to try to obtain a non-trivial quantum theory proceeds via a discretization of space-time and the Einstein action. I review here three major areas of research: gauge-theoretic approaches, both in a path-integral and a Hamiltonian formulation, quantum Regge calculus, and the method of dynamical triangulations, confining attention to work that is strictly four-dimensional, strictly discrete, and strictly quantum in nature.Comment: 33 pages, invited contribution to Living Reviews in Relativity; the author welcomes any comments and suggestion

    The Off-Shell Nucleon-Nucleon Amplitude: Why it is Unmeasurable in Nucleon-Nucleon Bremsstrahlung

    Full text link
    Nucleon-nucleon bremsstrahlung has long been considered a way of getting information about the off-shell nucleon-nucleon amplitude which would allow one to distinguish among nucleon-nucleon potentials based on their off-shell properties. There have been many calculations and many experiments devoted to this aim. We show here, in contrast to this standard view, that such off-shell amplitudes are not measurable as a matter of principle. This follows formally from the invariance of the S-matrix under transformations of the fields. This result is discussed here and illustrated via two simple models, one applying to spin zero, and one to spin one half, processes. The latter model is very closely related to phenomenological models which have been used to study off-shell effects at electromagnetic vertices.Comment: 6 pages, Latex, uses FBSsuppl.cls - Invited plenary talk at the Asia Pacific Conference on Few Body Problems in Physics, Noda/Kashiwa, Japan, August, 1999 - To be published in Few Body Systems Supp

    Realizability of the Lorentzian (n,1)-Simplex

    Full text link
    In a previous article [JHEP 1111 (2011) 072; arXiv:1108.4965] we have developed a Lorentzian version of the Quantum Regge Calculus in which the significant differences between simplices in Lorentzian signature and Euclidean signature are crucial. In this article we extend a central result used in the previous article, regarding the realizability of Lorentzian triangles, to arbitrary dimension. This technical step will be crucial for developing the Lorentzian model in the case of most physical interest: 3+1 dimensions. We first state (and derive in an appendix) the realizability conditions on the edge-lengths of a Lorentzian n-simplex in total dimension n=d+1, where d is the number of space-like dimensions. We then show that in any dimension there is a certain type of simplex which has all of its time-like edge lengths completely unconstrained by any sort of triangle inequality. This result is the d+1 dimensional analogue of the 1+1 dimensional case of the Lorentzian triangle.Comment: V1: 15 pages, 2 figures. V2: Minor clarifications added to Introduction and Discussion sections. 1 reference updated. This version accepted for publication in JHEP. V3: minor updates and clarifications, this version closely corresponds to the version published in JHE

    Global Versus Local Computations: Fast Computing with Identifiers

    Full text link
    This paper studies what can be computed by using probabilistic local interactions with agents with a very restricted power in polylogarithmic parallel time. It is known that if agents are only finite state (corresponding to the Population Protocol model by Angluin et al.), then only semilinear predicates over the global input can be computed. In fact, if the population starts with a unique leader, these predicates can even be computed in a polylogarithmic parallel time. If identifiers are added (corresponding to the Community Protocol model by Guerraoui and Ruppert), then more global predicates over the input multiset can be computed. Local predicates over the input sorted according to the identifiers can also be computed, as long as the identifiers are ordered. The time of some of those predicates might require exponential parallel time. In this paper, we consider what can be computed with Community Protocol in a polylogarithmic number of parallel interactions. We introduce the class CPPL corresponding to protocols that use O(nlogkn)O(n\log^k n), for some k, expected interactions to compute their predicates, or equivalently a polylogarithmic number of parallel expected interactions. We provide some computable protocols, some boundaries of the class, using the fact that the population can compute its size. We also prove two impossibility results providing some arguments showing that local computations are no longer easy: the population does not have the time to compare a linear number of consecutive identifiers. The Linearly Local languages, such that the rational language (ab)(ab)^*, are not computable.Comment: Long version of SSS 2016 publication, appendixed version of SIROCCO 201

    Line versus Flux Statistics -- Considerations for the Low Redshift Lyman-alpha Forest

    Get PDF
    The flux/transmission power spectrum has become a popular statistical tool in studies of the high redshift (z>2z > 2) Lyman-alpha forest. At low redshifts, where the forest has thinned out into a series of well-isolated absorption lines, the motivation for flux statistics is less obvious. Here, we study the relative merits of flux versus line correlations, and derive a simple condition under which one is favored over the other on purely statistical grounds. Systematic errors probably play an important role in this discussion, and they are outlined as well.Comment: 6 pages, to appear in "The IGM/Galaxy Connection: The Distribution of Baryons at z=0", eds. J. L. Rosenberg and M. E. Putma

    Baryon chiral perturbation theory with virtual photons and leptons

    Full text link
    We construct the general pion-nucleon SU(2) Lagrangian including both virtual photons and leptons for relativistic baryon chiral perturbation theory up to fourth order. We include the light leptons as explicit dynamical degrees of freedom by introducing new building blocks which represent these leptons.Comment: 11 page

    Polynomial Kernels for Weighted Problems

    Full text link
    Kernelization is a formalization of efficient preprocessing for NP-hard problems using the framework of parameterized complexity. Among open problems in kernelization it has been asked many times whether there are deterministic polynomial kernelizations for Subset Sum and Knapsack when parameterized by the number nn of items. We answer both questions affirmatively by using an algorithm for compressing numbers due to Frank and Tardos (Combinatorica 1987). This result had been first used by Marx and V\'egh (ICALP 2013) in the context of kernelization. We further illustrate its applicability by giving polynomial kernels also for weighted versions of several well-studied parameterized problems. Furthermore, when parameterized by the different item sizes we obtain a polynomial kernelization for Subset Sum and an exponential kernelization for Knapsack. Finally, we also obtain kernelization results for polynomial integer programs

    A statistical mechanics description of environmental variability in metabolic networks

    Get PDF
    Many of the chemical reactions that take place within a living cell are irreversible. Due to evolutionary pressures, the number of allowable reactions within these systems are highly constrained and thus the resulting metabolic networks display considerable asymmetry. In this paper, we explore possible evolutionary factors pertaining to the reduced symmetry observed in these networks, and demonstrate the important role environmental variability plays in shaping their structural organization. Interpreting the returnability index as an equilibrium constant for a reaction network in equilibrium with a hypothetical reference system, enables us to quantify the extent to which a metabolic network is in disequilibrium. Further, by introducing a new directed centrality measure via an extension of the subgraph centrality metric to directed networks, we are able to characterise individual metabolites by their participation within metabolic pathways. To demonstrate these ideas, we study 116 metabolic networks of bacteria. In particular, we find that the equilibrium constant for the metabolic networks decreases significantly in-line with variability in bacterial habitats, supporting the view that environmental variability promotes disequilibrium within these biochemical reaction system
    corecore