37 research outputs found
A structural basis for IκB kinase 2 activation via oligomerization-dependent trans auto-phosphorylation.
Activation of the IκB kinase (IKK) is central to NF-κB signaling. However, the precise activation mechanism by which catalytic IKK subunits gain the ability to induce NF-κB transcriptional activity is not well understood. Here we report a 4 Å x-ray crystal structure of human IKK2 (hIKK2) in its catalytically active conformation. The hIKK2 domain architecture closely resembles that of Xenopus IKK2 (xIKK2). However, whereas inactivated xIKK2 displays a closed dimeric structure, hIKK2 dimers adopt open conformations that permit higher order oligomerization within the crystal. Reversible oligomerization of hIKK2 dimers is observed in solution. Mutagenesis confirms that two of the surfaces that mediate oligomerization within the crystal are also critical for the process of hIKK2 activation in cells. We propose that IKK2 dimers transiently associate with one another through these interaction surfaces to promote trans auto-phosphorylation as part of their mechanism of activation. This structure-based model supports recently published structural data that implicate strand exchange as part of a mechanism for IKK2 activation via trans auto-phosphorylation. Moreover, oligomerization through the interfaces identified in this study and subsequent trans auto-phosphorylation account for the rapid amplification of IKK2 phosphorylation observed even in the absence of any upstream kinase
A Structural Guide to Proteins of the NF-κB Signaling Module
The prosurvival transcription factor NF-κB specifically binds promoter DNA to activate target gene expression. NF-κB is regulated through interactions with IκB inhibitor proteins. Active proteolysis of these IκB proteins is, in turn, under the control of the IκB kinase complex (IKK). Together, these three molecules form the NF-κB signaling module. Studies aimed at characterizing the molecular mechanisms of NF-κB, IκB, and IKK in terms of their three-dimensional structures have lead to a greater understanding of this vital transcription factor system
Recommended from our members
Genome reading by the NF-κB transcription factors
The NF-κB family of dimeric transcription factors regulates transcription by selectively binding to DNA response elements present within promoters or enhancers of target genes. The DNA response elements, collectively known as κB sites or κB DNA, share the consensus 5'-GGGRNNNYCC-3' (where R, Y and N are purine, pyrimidine and any nucleotide base, respectively). In addition, several DNA sequences that deviate significantly from the consensus have been shown to accommodate binding by NF-κB dimers. X-ray crystal structures of NF-κB in complex with diverse κB DNA have helped elucidate the chemical principles that underlie target selection in vitro. However, NF-κB dimers encounter additional impediments to selective DNA binding in vivo. Work carried out during the past decades has identified some of the barriers to sequence selective DNA target binding within the context of chromatin and suggests possible mechanisms by which NF-κB might overcome these obstacles. In this review, we first highlight structural features of NF-κB:DNA complexes and how distinctive features of NF-κB proteins and DNA sequences contribute to specific complex formation. We then discuss how native NF-κB dimers identify DNA binding targets in the nucleus with support from additional factors and how post-translational modifications enable NF-κB to selectively bind κB sites in vivo
Structural characterization of agonist and antagonist-bound acetylcholine-binding protein from Aplysia californica.
Nicotinic acetylcholine receptors (nAChRs) are well-characterized allosteric transmembrane proteins involved in the rapid gating of ions elicited by ACh. These receptors belong to the Cys-loop superfamily of ligand-gated ion channels, which also includes GABAA and GABAC, 5-HT3, and glycine receptors. The nAChRs are homo- or heteromeric pentamers of structurally related subunits that encompass an extracellular N-terminal ligand-binding domain, four transmembrane-spanning regions that form the ion channel, and an extended intracellular region between spans 3 and 4. Ligand binding triggers conformational changes that are transmitted to the transmembrane-spanning region, leading to gating and changes in membrane potential. The four transmembrane spans on each of the five subunits create a substantial region of hydrophobicity that precludes facile crystallization of this protein. However the freshwater snail, Lymnaea stagnalis, produces a soluble homopentameric protein, termed the ACh-binding protein (AChBP), which binds ACh (Smit et al., 2001). Its structure was determined recently (Brejc et al., 2001) at high resolution, revealing the structural scaffold for nAChR, and has become a functional and structural surrogate of the nAChR ligand-binding domain. We have characterized an AChBP from Aplysia californica and determined distinct ligand-binding properties when compared to those of L. stagnalis, including ligand specificity for the nAChR alpha7 subtype-specific alpha-conotoxin ImI (Hansen et al., 2004)
Recommended from our members
Structurally plastic NEMO and oligomerization prone IKK2 subunits define the behavior of human IKK2:NEMO complexes in solution
The human IκB Kinase (IKK) is a multisubunit protein complex of two kinases and one scaffolding subunit that controls induction of transcription factor NF-κB activity. IKK behaves as an entity of aberrantly high apparent molecular weight in solution. Recent X-ray crystallographic and cryo-electron microscopy structures of individual catalytic subunits (IKK1/IKKα and IKK2/IKKβ) reveal that they are both stably folded dimeric proteins that engage in extensive homo-oligomerization through unique surfaces that are required for activation of their respective catalytic activities. The NEMO/IKKγ subunit is a predominantly coiled coil protein that is required for activation of IKK through the canonical NF-κB signaling pathway. Here we report size-exclusion chromatography, multi-angle light scattering, analytical centrifugation, and thermal denaturation analyses of full-length human recombinant NEMO as well as deletion and disease-linked variants. We observe that NEMO is predominantly a dimer in solution, although by virtue of its modular coiled coil regions NEMO exhibits complicated solution dynamics involving portions that are mutually antagonistic toward homodimerization. This behavior causes NEMO to behave as a significantly larger sized particle in solution. Analyses of NEMO in complex with IKK2 indicate that NEMO preserves this structurally dynamic character within the multisubuit complex and provides the complex-bound IKK2 further propensity toward homo-oligomerization. These observations provide critical information on the structural plasticity of NEMO subunit dimers which helps clarify its role in diseases and in IKK regulation through oligomerization-dependent phosphorylation of catalytic IKK2 subunit dimers
Structural comparison of three crystalline complexes of a peptidic toxin with a synaptic acetylcholine recognition protein.
Many peptidic toxins from animal venoms target neuronal or peripheral synaptic receptors with high affinities and specificities. Hence, these toxins are not only potent natural weapons but also precise molecular tools for pharmacological studies of their receptors. Although they belong to various structural and/or functional subfamilies, they often share similar molecular features, such as a highly reticulated scaffold presenting specific binding determinants
Recommended from our members
Probing Kinase Activation and Substrate Specificity with an Engineered Monomeric IKK2
Catalytic subunits of the IκB kinase (IKK), IKK1/IKKα, and IKK2/IKKβ function in vivo as dimers in association with the necessary scaffolding subunit NEMO/IKKγ. Recent X-ray crystal structures of IKK2 suggested that dimerization might be mediated by a smaller protein-protein interaction than previously thought. Here, we report that removal of a portion of the scaffold dimerization domain (SDD) of human IKK2 yields a kinase subunit that remains monomeric in solution. Expression in baculovirus-infected Sf9 insect cells and purification of this engineered monomeric human IKK2 enzyme allows for in vitro analysis of its substrate specificity and mechanism of activation. We find that the monomeric enzyme, which contains all of the amino-terminal kinase and ubiquitin-like domains as well as the more proximal portions of the SDD, functions in vitro to direct phosphorylation exclusively to residues S32 and S36 of its IκBα substrate. Thus, the NF-κB-inducing potential of IKK2 is preserved in the engineered monomer. Furthermore, we observe that our engineered IKK2 monomer readily autophosphorylates activation loop serines 177 and 181 in trans. However, when residues that were previously observed to interfere with IKK2 trans autophosphorylation in transfected cells are mutated within the context of the monomer, the resulting Sf9 cell expressed and purified proteins were significantly impaired in their trans autophosphorylation activity in vitro. This study further defines the determinants of substrate specificity and provides additional evidence in support of a model in which activation via trans autophosphorylation of activation loop serines in IKK2 requires transient assembly of higher-order oligomers